User:Adriferr

From Wikipedia, the free encyclopedia

Edit this page (or any of the subsections by clicking "edit" next to the heading). Add, change, correct, modify anything you like. All the changes are logged anyway. If you think you know something (even just a vague general idea), just post it, and we'll see how much we can get out of it.

[edit] Phys558 Temp Space

hah. If you thought the 2005 final was bad, go look at the one with carbon nanotube crystals. That's crazy. I can't even find papers on how to do it.

[edit] Math580 Temp Space

\bigg\langle\int_0^tG(s)dB(s)\bigg\rangle=0

\bigg\langle\int_0^tG(s)dB(s)\cdot\int_0^tH(s)dB(s)\bigg\rangle=
\int_0^t\langle G(s)H(s)\rangle ds

\sum_{i=0}^{n-1}f(t_i)\{B_{t_{i+1}}-B_{t_{i}}\}

\ddot{\phi}=-\gamma \dot{\phi}+\sigma \eta (t)

\phi(t)=\phi_0+\frac{\omega_0}{\gamma}\left(1-e^{-\gamma t}\right)+\sigma\int_0^te^{\gamma s}B(s)\,ds


d\omega_t=-\gamma \,\underbrace{\omega_t\,dt}_{d\phi_t}+\sigma dB_t

\omega_t=\frac{d\phi(t)}{dt}=\omega_0-\gamma\left(\phi_t-\phi_0\right)+\sigma B_t


Missing: Show that: \mathrm{d}\! \left(\int_0^t\frac{dB(s)}{1-s}\right)=\int_0^t\mathrm{d} \left(\frac{dB(s)}{1-s}\right)=\frac{dB(t)}{1-t}

Attempt: \begin{align}\mathrm{d}\! \left(\int_0^t\frac{dB(s)}{1-s}\right)&=\mathrm{d}\! \left( \sum_{j=0}^{n-1} \frac{B((j+1)t/n)-B(jt/n)}{1-jt/n}\right)\\
&=\left(\sum_{j=1}^{n} \frac{B((j+1)t/n)-B(jt/n)}{1-jt/n}\right)-\left(\sum_{j=0}^{n-1} \frac{B((j+1)t/n)-B(jt/n)}{1-jt/n}\right)\\
&=\frac{B((n+1)t/n)-B(t)}{1-t}-\left[B(t/n)-B(0)\right]\\
&\to\frac{dB(t)}{1-t}
\end{align}

[edit] 3

 dX(t) = a(X,t)\,dt + b(X,t)\,dB_t

where Wt is a Wiener process, and let f(x, t) be a function with continuous second derivatives.

Then f(x(t),t) is also an Itō process, and

 df(X(t),t) = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial X}\underbrace{\left[a(X,t)dt+ b(X,t)\,dB_t\right]}_{dX_t} +\underbrace{\frac{1}{2}b(X,t)^2\frac{\partial^2 f}{\partial X^2}}_{\mathrm{Ito}\;\mathrm{correction}}dt
 df(x(t),t) = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial x}dx

\langle \dot{\phi} \rangle = \omega_0 e^{-\gamma t} var(\dot{\phi})= \sigma^2 t (dBt)2 = dt d(B_T^n) d(B_T^n)=nB_t^{n-1}dB_t+\left[\frac{n(n-1)}{2}B_t^{n-2}\,dt\right]

[edit] 4

dXt = − γXtdt + σdBt eγt X_t=X_0e^{-\gamma t}+\sigma\int e^{\gamma(s-t)}dB(s)

 dN_t = r N_t\,dt + \alpha N_t\,dB_t
d\left(\ln(N_t)\right)
N_t=N_0\exp\left[\left(r-\alpha^2/2\right)t+\alpha B_t\right]
X0e − γt
\frac{\sigma^2}{2\gamma}\left(1-e^{-2\gamma t}\right)

[edit] Phys413/Phyg610 Temp Space