Achilles number

From Wikipedia, the free encyclopedia

Divisibility-based
sets of integers
Form of factorization:
Prime number
Composite number
Powerful number
Square-free number
Achilles number
Constrained divisor sums:
Perfect number
Almost perfect number
Quasiperfect number
Multiply perfect number
Hyperperfect number
Superperfect number
Unitary perfect number
Semiperfect number
Primitive semiperfect number
Practical number
Numbers with many divisors:
Abundant number
Highly abundant number
Superabundant number
Colossally abundant number
Highly composite number
Superior highly composite number
Other:
Deficient number
Weird number
Amicable number
Friendly number
Sociable number
Solitary number
Sublime number
Harmonic divisor number
Frugal number
Equidigital number
Extravagant number
See also:
Divisor function
Divisor
Prime factor
Factorization
This box: view  talk  edit

An Achilles number is a number that is powerful but not a perfect power. A positive integer n is a powerful number if, for every prime divisor or factor p of n, p2 is also a divisor. In other words, every prime factor appears squared. All Achilles numbers are powerful. However, not all powerful numbers are Achilles numbers: only those that cannot be represented as mk, where m and k are positive integers greater than 1.

Achilles numbers, put laconically, are powerful but imperfect (as in not a perfect power) like Achilles, a hero of the Trojan war.

[edit] Sequence of Achilles numbers

The Achilles numbers up to 5000 are:

72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800, 1944, 2000, 2312, 2592, 2700, 2888, 3087, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4232, 4500, 4563, 4608, 5000 (sequence A052486 in OEIS).

[edit] Examples

108 is a powerful number. Its prime factorization is 2^2 \cdot 3^3, and thus its prime factors are 2 and 3. Both 22 = 4 and 32 = 9 are divisors of 108. However, 108 cannot be represented as mk, where m and k are positive integers greater than 1, so 108 is an Achilles number.

Finally, 784 is not an Achilles number. It is a powerful number, because not only are 2 and 7 its only prime factors, but also 22 = 4 and 72 = 49 are divisors of it. Nonetheless, it is a perfect power:

784=2^4 \cdot 7^2 = (2^2)^2 \cdot 7^2 = (2^2 \cdot 7)^2 = 28^2.

So it is not an Achilles number.

[edit] External links

Languages