310 helix

From Wikipedia, the free encyclopedia

The correct title of this article is 310 helix. It features superscript or subscript characters that are substituted or omitted because of technical limitations.
Side view of an 310-helix of alanine residues in atomic detail.  Two hydrogen bonds to the same peptide group are highlighted in magenta; the oxygen-hydrogen distance is 1.83 Å (183 pm).  The protein chain runs upwards, i.e., its N-terminus is at the bottom and its C-terminus at the top of the figure. Note that the sidechains point slightly downwards, i.e., towards the N-terminus.
Side view of an 310-helix of alanine residues in atomic detail. Two hydrogen bonds to the same peptide group are highlighted in magenta; the oxygen-hydrogen distance is 1.83 Å (183 pm). The protein chain runs upwards, i.e., its N-terminus is at the bottom and its C-terminus at the top of the figure. Note that the sidechains point slightly downwards, i.e., towards the N-terminus.

A 310 helix is a type of secondary structure found (rarely) in proteins.

[edit] Structure

The amino acids in a 310-helix are arranged in a right-handed helical structure. Each amino acid corresponds to a 120° turn in the helix (i.e., the helix has three residues per turn), and a translation of 2.0 Å (= 0.2 nm) along the helical axis. Most importantly, the N-H group of an amino acid forms a hydrogen bond with the C = O group of the amino acid three residues earlier; this repeated i + 3 → i hydrogen bonding defines a 310-helix. Similar structures include the α-helix (i + 4 → i hydrogen bonding) and the π-helix i + 5 → i hydrogen bonding).

Top view of the same helix shown to the right.  Three carbonyl groups are pointing upwards towards the viewer, spaced roughly 120° apart on the circle, corresponding to 3.0 amino-acid residues per turn of the helix.
Top view of the same helix shown to the right. Three carbonyl groups are pointing upwards towards the viewer, spaced roughly 120° apart on the circle, corresponding to 3.0 amino-acid residues per turn of the helix.

Residues in 310-helices typically adopt (φ, ψ) dihedral angles near (−49°, −26°). More generally, they adopt dihedral angles such that the ψ dihedral angle of one residue and the φ dihedral angle of the next residue sum to roughly −75°. For comparison, the sum of the dihedral angles for an α-helix is roughly −105°, whereas that for a π-helix is roughly −125°.

The general formula for the rotation angle Ω per residue of any polypeptide helix with trans isomers is given by the equation


3 \cos \Omega = 1 - 4 \cos^{2} \left(\frac{\varphi + \psi}{2} \right).

[edit] See also

[edit] References

  • Pauling L, Corey RB and Branson HR. (1951) "The Structure of Proteins: Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain", Proc. Nat. Acad. Sci. Wash., 37, 205.


Protein secondary structure
Helices: α-helix | 310 helix | π-helix | β-helix | Polyproline helix | Collagen helix
Extended: β-strand | Turn | Beta hairpin | Beta bulge | α-strand
Supersecondary: Coiled coil | Helix-turn-helix | EF hand
Secondary structure propensities of amino acids
Helix-favoring: Methionine | Alanine | Leucine | Glutamic acid | Glutamine | Lysine
Extended-favoring: Threonine | Isoleucine | Valine | Phenylalanine | Tyrosine | Tryptophan
Disorder-favoring: Glycine | Serine | Proline | Asparagine | Aspartic acid
No preference: Cysteine | Histidine | Arginine
←Primary structure Tertiary structure→
Languages