User:Yafujifide

From Wikipedia, the free encyclopedia

Symbolically:

S=\sum_{n=1}^\infty \frac{1}{2^{n}}=\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + ...

Clearly,

\sum_{n=1}^\infty \frac{1}{2^{n}}=\sum_{n=1}^\infty \bigg(\frac{1}{2}\bigg)^{n}

This is a geometric series of the form \sum_{n=1}^\infty ar^{n-1} where a=\frac{1}{2}, r=\frac{1}{2}, and S=\frac{a}{1-r}. Therefore,

S=\frac{\frac{1}{2}}{1-\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1

...

\sum_{n=\infty}^1 \frac{1}{2^{n}}=\sum_{n=1}^\infty \frac{1}{2^{n}}

In other words:

... + \frac{1}{16} + \frac{1}{8} + \frac{1}{4} + \frac{1}{2}=\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + ...