Word processor
From Wikipedia, the free encyclopedia
A word processor (more formally known as document preparation system) is a computer application used for the production (including composition, editing, formatting, and possibly printing) of any sort of printable material.
A word processor may also refer to a stand-alone computer unit similar to a typewriter, but often including technological advancements such as a screen, advanced formatting and printing options, and the ability to save documents onto memory cards or diskettes. Word processors almost invariably allowed the user to choose between standard typing and word processing modes by way of a switch. Such word processors should not be confused with an electric typewriter.
Word processors are descended from early text formatting tools (sometimes called text justification tools, from their only real capability). Word processing was one of the earliest applications for the personal computer in office productivity.
Although early word processors used tag-based markup for document formatting, most modern word processors take advantage of a graphical user interface. Most are powerful systems consisting of one or more programs that can produce any arbitrary combination of images, graphics and text, the latter handled with type-setting capability.
Microsoft Word is the most widely used computer word processing system; Microsoft estimates over five hundred million people use the Office suite. There are also many other commercial word processing applications, such as WordPerfect. Open-source applications such as OpenOffice's Writer and KWord are rapidly gaining in popularity.
Contents |
[edit] Characteristics
Word processing typically refers to text manipulation functions such as automatic generation of:
- batch mailings using a form letter template and an address database (also called mail merging);
- indices of keywords and their page numbers;
- tables of contents with section titles and their page numbers;
- tables of figures with caption titles and their page numbers;
- cross-referencing with section or page numbers;
- footnote numbering
Other word processing functions include "spell checking" (actually checks against wordlists), "grammar checking" (checks for what seem to be simple grammar errors), and a "thesaurus" function (finds words with similar or opposite meanings). In most languages grammar is very complex, so grammar checkers tend to be unreliable and also require a large amount of RAM. Other common features include collaborative editing, comments and annotations, support for images and diagrams and internal cross-referencing.
Word processors can be distinguished from several other, related forms of software:
Text editors (modern examples of which include Notepad, Emacs and vi), were the precursors of word processors. While offering facilities for composing and editing text, they do not format documents. This can be done by batch document processing systems, starting with TJ-2 and RUNOFF and still available in such systems as LaTeX (as well as programs that implement the paged-media extensions to HTML and CSS). Text editors are now used mainly by programmers, website designers, and computer system administrators. They are also useful when fast startup times, small file sizes and portability are preferred over formatting.
Later desktop publishing programs were specifically designed to allow elaborate layout for publication, but often offered only limited support for editing. Typically, desktop publishing programs allowed users to import text that they have written using a text editor or word processor.
Almost all word processors enable users to employ styles,[citation needed] which are used to automate consistent formatting of text body, titles, subtitles, highlighed text, and so on.
Styles are the key to managing the formatting of large documents, since changing a style automatically changes all text that the style has been applied to. Even in shorter documents styles can save a lot of time while formatting. However, most help files refer to styles as an 'advanced feature' of the word processor, which often discourages users from using styles regularly.
[edit] Typical Word Processor Usage
Word Processors have a variety of uses and applications within the business world, home, and education.
[edit] Business
Within the business world, word processors are extremely useful tools. Typical uses include:
- memos
- letters and letterhead
- legal copies
- reference documents
Businesses tend to have their own format and style for any of these. Thus, versatile word processors with layout editing and similar capabilities find widespread use in most businesses.
[edit] Education
Many schools have begun to teach typing and word processing to their students, starting as early as elementary school. Typically these skills are developed throughout secondary school in preparation for the business world. Undergraduate students typically spend many hours writing essays. Graduate and doctoral students continue this trend, as well as creating works for research and publication. These manuscripts are often in excess of 200 pages, and are typically the defining point of a student's career.
[edit] Home
While many homes have word processors on their computers, word processing in the home tends to be educational or business related, dealing with assignments or work being completed at home. Some use word processors for letter writing, résumé creation, and card creation. However, many of these home publishing processes have been taken over by desktop publishing programs such as Adobe Pagemaker, which is better suited for these types of documents.
[edit] Origin of the term
The term word processing was invented by IBM in the late 1960s. By 1971 it was recognized by the New York Times as a "buzz word."[1] A 1971 Times article referred to "the brave new world of Word Processing or W/P. That's International Business Machines talk... I.B.M. introduced W/P about five years ago for its Magnetic Selectric typewriter and other electronic razzle-dazzle."[2]
IBM defined the term in a broad and vague way as "the combination of people, procedures, and equipment which transforms ideas into printed communications," and originally used it to include dictating machines and ordinary, manually-operated Selectric typewriters.[3] By the early seventies, however, the term was generally understood to mean semiautomated typewriters affording at least some form of electronic editing and correction, and the ability to produce perfect "originals." Thus, the Times headlined a 1974 Xerox product as a "speedier electronic typewriter," but went on to describe the product, which had no screen[4], as "a word processor rather than strictly a typewriter, in that it stores copy on magnetic tape or magnetic cards for retyping, corrections, and subsequent printout."[5]
Electromechanical paper-tape-based equipment such as the Friden Flexowriter had long been available; the Flexowriter allowed for operations such as repetitive typing of form letters (with a pause for the operator to manually type in the variable information)[6], and when equipped with an auxiliary reader, could perform an early version of "mail merge". Circa 1970 it began to be feasible to apply electronic computers to office automation tasks. IBM's Mag Tape Selectric Typewriter (MTST) and later Mag-Card Selectric (MCST) were early devices of this kind, which allowed editing, simple revision, and repetitive typing, with a one-line display for editing single lines.[7]
The New York Times, reporting on a 1971 business equipment trade show, said
- The "buzz word" for this year's show was "word processing," or the use of electronic equipment, such as typewriters; procedures and trained personnel to maximize office efficiency. At the IBM exhibition a girl[sic] typed on an electronic typewriter. The copy was received on a magnetic tape cassette which accepted corrections, deletions, and additions and then produced a perfect letter for the boss's signature.... [1]
In 1971, a third of all working women in the United States were secretaries, and they could see that word processing would have an impact on their careers. Some manufacturers, according to a Times article, urged that "the concept of 'word processing' could be the answer to Women's Lib advocates' prayers. Word processing will replace the 'traditional' secretary and give women new administrative roles in business and industry."[1]
The 1970s word processing concept did not refer merely to equipment, but, explicitly, to the use of equipment for "breaking down secretarial labor into distinct components, with some staff members handling typing exclusively while others supply administrative support. A typical operation would leave most executives without private secretaries. Instead one secretary would perform various administrative tasks for three or more secretaries."[8] A 1971 article said that "Some [secretaries] see W/P as a career ladder into management; others see it as a dead-end into the automated ghetto; others predict it will lead straight to the picket line." The National Secretaries Association, which defined secretaries as people who "can assume responsibility without direct supervision," feared that W/P would transform secretaries into "space-age typing pools." The article considered only the organizational changes resulting from secretaries operating word processors rather than typewriters; the possibility that word processors might result in managers creating documents without the intervention of secretaries was not considered—not surprising in an era when few but secretaries possessed keyboarding skills.[2]
In the early 1970's, computer scientist Harold Koplow was hired by Wang Laboratories to program calculators. One of his programs permitted a Wang calculator to interface with an IBM Selectric typewriter, which was at the time used to calculate and print the paperwork for auto sales.
In 1974, Koplow's interface program was developed into the Wang 1200 Word Processor, an IBM Selectric-based text-storage device. The operator of this machine typed text on a conventional IBM Selectric; when the Return key was pressed, the line of text was stored on a cassette tape. One cassette held roughly 20 pages of text, and could be "played back" (e.g., the text retrieved) by printing the contents on continuous-form paper in the 1200 typewriter's "print" mode. The stored text could also be edited, using keys on a simple, six-key array. Basic editing functions included Insert, Delete, Skip (character, line), and so on.
The labor and cost savings of this device were immediate, and remarkable: pages of text no longer had to be retyped to correct simple errors, and projects could be worked on, stored, and then retrieved for use later on. The rudimentary Wang 1200 machine was the precursor of the Wang Office Information System (OIS), introduced in 1976, whose CRT-based system was a major breakthrough in word processing technology. It displayed text on a CRT screen, and incorporated virtually every fundamental characteristic of word processors as we know them today. It was a true office machine, affordable by organizations such as medium-sized law firms, and easily learned and operated by secretarial staff.
The Wang was not the first CRT-based machine nor were all of its innovations unique to Wang. In the early 1970s Linolex, Lexitron and Vydec introduced pioneering word-processing systems with CRT display editing. A Canadian electronics company, Automatic Electronic Systems, introduced a product with similarities to Wang's product in 1974, but went into bankruptcy a year later. In 1976, refinanced by the Canada Development Corporation, it returned to operation as AES Data, and went on to successfully market its brand of word processors worldwide until its demise in the mid-1980s. Despite these predecessors, Wang's product was a standout, and by 1978 it had sold more of these systems than any other vendor.[9]
The phrase "word processor" rapidly came to refer to CRT-based machines similar to Wang's. Numerous machines of this kind emerged, typically marketed by traditional office-equipment companies such as IBM, Lanier (marketing AES Data machines, re-badged), CPT, and NBI. All were specialized, dedicated, proprietary systems, with prices in the $10,000 ballpark. Cheap general-purpose computers were still the domain of hobbyists.
Some of the earliest CRT-based machines used cassette tapes for removable-memory storage until floppy diskettes became available for this purpose - first the 8-inch floppy, then the 5-1/4-inch (drives by Shugart Associates and diskettes by Dysan). Printing of documents was initially accomplished using IBM Selectric typewriters modified for ASCII-character input. These were later replaced by application-specific daisy wheel printers (Diablo, which became a Xerox company, and Qume -- both now defunct.) For quick "draft" printing, dot-matrix line printers were optional alternatives with some word processors.
With the rise of personal computers, and in particular the IBM PC and PC compatibles, software-based word processors running on general-purpose commodity hardware gradually displaced dedicated word processors, and the term came to refer to software rather than hardware.
Early word-processing software required users to memorize semi-mnemonic key combinations rather than pressing keys labelled "copy" or "bold." (In fact, many early PCs lacked cursor keys; WordStar famously used the E-S-D-X-centered "diamond" for cursor navigation, and modern vi-like editors encourage use of hjkl for navigation.) However, the price differences between dedicated word processors and general-purpose PCs, and the value added to the latter by software such as VisiCalc, were so compelling that personal computers and word processing software soon became serious competition for the dedicated machines.
The late 1980s saw the advent of laser printers, a "typographic" approach to word processing (WYSIWYG - What You See Is What You Get), using bitmap displays with multiple fonts (pioneered by the Xerox Alto computer and Bravo word processing program), and graphical user interfaces (another Xerox PARC innovation, with the Gypsy word processor). These were popularized by MacWrite on the Apple Macintosh in 1984, and Microsoft Word on the IBM PC in 1984; these were probably the first true WYSIWYG word processors to become known to many people. Dedicated word processors eventually became museum pieces.
[edit] See also
- TeX
- LaTeX
- List of word processors
- Comparison of word processors
- Amstrad PCW
- Canon Cat
- Office suite
- Typography
- Wang Laboratories
[edit] External links
- Word Processors at SourceForge
- "Word Processors: Stupid and Inefficient" - editorial by Allin Cottrell
- FOSS word processors compared: OOo Writer, AbiWord, and KWord by Bruce Byfield
- Citations by CiteSeer
- History of Word Processing
- "Remembering the Office of the Future: Word Processing and Office Automation before the Personal Computer" - A comprehensive history of early word processing concepts, hardware, software, and use. By Thomas Haigh, IEEE Annals of the History of Computing 28:4 (October-December 2006):6-31.
[edit] Notes
- ^ a b c Smith, William D. (1971) "Lag Persists for Business Equipment;" The New York Times, October 26, 1971 p. 59
- ^ a b Dullea, Georgia (1971): "Is It a Boon for Secretaries—Or Just an Automated Ghetto?" The New York Times, February 5, 1971, p. 32
- ^ "IBM Adds to Line of Dictation Items;" The New York Times, September 12, 1972; p. 72; reports introduction of "five new models of 'input word processing equipment,' better known in the past as dictation equipment" and gives IBM's definition of WP as "the combination of people, procedures, and equipment which transforms ideas into printed communications.'" The machines described were of course ordinary dictation machines recording onto magnetic belts, not voice typewriters.
- ^ Miller, Diane Fisher (1997) "My Life with the Machine": "By Sunday afternoon, I urgently want to throw the Xerox 800 through the window, then run over it with the company van. It seems that the instructor forgot to tell me a few things about doing multi-page documents... To do any serious editing, I must use both tape drives, and, without a display, I must visualize and mentally track what is going onto the tapes."
- ^ Smith, William D (1974) "Xerox Is Introducing a Speedier Electric Typewriter," The New York Times, October 8, 1974, p. 57
- ^ O'Kane, Lawrence (1966): "Computer a Help to 'Friendly Doc'; Automated Letter Writer Can Dispense a Cheery Word". The New York Times, May 22, 1966, p. 348: "Automated cordiality will be one of the services offered to physicians and dentists who take space in a new medical center.... The typist will insert the homey touch in the appropriate place as the Friden automated, programmed "Flexowriter" rattles off the form letters requesting payment... or informing that the X-ray's of the patient (kidney) (arm) (stomach) (chest) came out negative."
- ^ Rostky, Georgy (2000). The word processor: cumbersome, but great. EETimes. Retrieved on May 29, 2006.
- ^ Smith, William D. (1974) "Electric Typewriter Sales Are Bolstered by Efficiency," The New York Times, December 16, 1974, p. 57
- ^ Schuyten, Peter J. (1978): "Wang Labs: Healthy Survivor" The New York Times December 6, 1978 p. D1: "[Market research analyst] Amy Wohl... said... 'Since then, the company has installed more of these systems than any other vendor in the business."