Talk:Volt
From Wikipedia, the free encyclopedia
[edit] Removal of the final 'a'
One thing I've always wondered about is why the unit is called "Volt" instead of "Volta". This seems the only case where the original scientist (sur)name is not used exactly as is for the unit of measure. Does anyone know? --Gennaro Prota 01:30, 7 January 2006 (UTC)
The farad is another, which was abbreviated because "faraday" was already taken. Ampere is often abbreviated to amp, perhaps similar logic was used for volt. --Hyperneural 02:04, 22 March 2006 (UTC)
- farad is similar, yes; but "amp" is not, as the unit name is still "ampere". Before posting here I did some investigations and found an Italian document reporting the following:
- volt: from the Italian physicist Alessandro Volta - the ortographic and phonetic contraction was deliberated [sic!] by the BIPM during the meetings held in Scheveningen (Netherlands) and Bruxelles on 17 and 30 June 1935.
- Unfortunately the meetings are so old that I doubt their minutes (supposed that they included a rationale) have been transcribed in electronical form. In any case I didn't find them. Should you find more info, please inform me! This is a question that lasts from my childhood :) --Gennaro Prota 04:26, 22 March 2006 (UTC)
- I found some interesting info reguarding this. I believe the date found by the above anon poster was actually the date the tried to standardize the volt as being a J/C. It looks like the British Association for the Advancement of Science('BAAS') proposal was utilized by the first International Electrical Congresses('IEC') to establish the volt as a unit of emf. [1] The question now remains to find the full details of the preceedings of the first(or first few) IEC Kevin_b_er 02:43, 2 June 2006 (UTC)
-
-
- Pardon me but... who is the anon poster? :) —Gennaro Prota•Talk 15:49, 2 June 2006 (UTC)
-
[edit] Rewordings/adjustments for non-engineers
This article, and those of amps, watts, etc, is very precise and I'm sure it is good reference material for engineers However as a non engineer I didn't really get anything out of this. It seems to assume knowledge of the theory of electricity and power, which I don't have.
Some good questions to answer:
- How does a volt relate to a watt? An ampere?
- What sorts of ranges of voltages are found around the world in various devices and why?
- Are volts a concept or a thing?
Each of these questions needs to be answered in English, not equations. The text should not rely on me following a series of links in order to understand it (which is currently the case), but be explanatory while providing links for more detailed or technical information.
-
- how does a volt relate to a watt? in english? that's a tough one. :-) a watt is a measurement of the amount of power (physics) that is being transferred from one place to another. the ampere is a measurement of the amount of charged particles moving from one place to another. the relationship between the three is an equation. i can't think of any other way to put it. what is the relationship between inches and pounds in english with no equations?
- lots. domestic power lines are in the hundreds of volts, distribution power lines are in the thousands, particle accelerators are spoken of in terms of millions of volts(?), the bioelectricity on your scalp from the functioning of your brain is in the microvolts.
- it's a measurement. not sure which of your choices that falls under. it can be thought of as a measurement of "electron pressure".
- can anyone else do better? - Omegatron 22:49, Mar 8, 2005 (UTC)
- yeah. the first sentence of the voltage (potential difference) article is pretty awful... :-) - Omegatron 22:52, Mar 8, 2005 (UTC)
- You can try to think of something that you can relate to. For example, "work" is done when you are pushing a heavy box across the room. Energy is invisible, but you can easily see the amount of "work" done. So you can say it takes that many calories to move the box that far. Same with voltage, you can ask this question: how much energy is needed to move an electric charge from Point A to Point B?
[edit] New standard format?
Discussion moved to Talk:Units of measurement
[edit] Hydraulic analogy
Re: "water circulating in a network of pipes, driven by pumps in the absence of gravity, then the potential difference corresponds to the hydrostatic pressure difference between two points". The "hydrostatic pressure" hyperlink is redirected to "fluid pressure", perhaps because "hydrostatic pressure" is more narrowly, and I presume correctly, defined there as the pressure of a fluid due to the weight of the fluid, which makes the "absence of gravity" correspondence to "hydrostatic pressure" on the "Volt" page problematic. Perhaps the simple solution is to change the linked reference text from "hydrostatic pressure" to "fluid pressure"? I am new to both Wiki and physics, and perhaps there is more to this than I can see, but for anyone simply following the linked text, there is I think a problem. jauntymcd@sprint.ca Oct 22, 2005
- I changed to fluid pressure, as above. I also removed most of : "Voltage is a convenient way of quantifying the ability to do work without having to specify the amount of charge (the number of electrons or other particles) involved. This simplifies electrical calculations, where the number of particles that move is usually of no interest." I don't think it is helpful. The amount of charge might be relevant in talking about the voltage across a capacitor, but the voltage induced across a conductor by a changing magnetic field has nothing to do with quantity of charge.--agr 11:25, 2 December 2005 (UTC)
W/ some minor exceptions, this is a good discussion of voltage. However, there is nothing as to what voltage is rigorously. What is it about certain electrons that makes them different from others of lower/higher voltage?
- Voltage is a property of an electric field, not individual electrons. See "Technical definition". An electron moving across a voltage difference gains energy, often measured in electron-volts.(hmmm maybe this belongs in the article) --agr 11:34, 2 December 2005 (UTC)
[edit] Volt vs Voltage/Potential difference
The volt is a unit of voltage or (electric/electrical) potential difference. Right now voltage redirects to volt. I suggest that there should be a separate article on voltage, with the content split from volt. Volt is to voltage as watt is to power, newton is to force etc. —The preceding unsigned comment was added by Wakiped (talk • contribs) 08:35, 15 December 2005.
- Wakiped is absolutely right. Ampere and Electric current have different articles; so should Volt and Voltage. I'll add the appropriate tags. Melchoir 11:43, 15 February 2006 (UTC)
[edit] ... in Volt
I was missing that in the article. That should be Tension is defined in Volts?
- Huh? Melchoir 21:30, 23 February 2006 (UTC)
As: Current is defined in Amperés.
- I have no idea what you're trying to say. Melchoir 07:58, 24 February 2006 (UTC)
for instance: Tesla is the standard unit of magnetic flux density. From what is Volt the standard unit? I don't know and couldn't find it in this article so I thought I should comment about it.
- Oh, right. The volt is the standard unit of voltage, aka electric potential difference. Melchoir 05:37, 5 March 2006 (UTC)
[edit] Definition of Volt
I thought the definition of volt is confusing to students. Even though the statement itself is true, as a definition, it takes into account additional variables such as rate of charge flow and power. I think a much more simplified definition would be much easier for a student to grasp that doesn't take the extra into consideration. Maybe:
"One volt is the potential difference between two points in an electric circuit when the energy involved in moving one coulomb of electric charge from one point to the other is one joule." ("Introduction to Electric Circuits", Herbert W. Jackson, p. 35)
[edit] Equations for DC circuits
In the section on DC circuit equations, the following are listed:
Multiplying equations 2 and 3 produces V2 = PR, which contradicts with equation 1. I don't know enough physics to know if this is (somehow) right, or what would make it correct.
Ealex292 04:37, 9 April 2006 (UTC)
[edit] Split/merge/whatever to Voltage
Per Talk:Voltage and the template having been up forever, I'm performing the... operation, whatever it is. Melchoir 05:32, 9 April 2006 (UTC)
[edit] Defining a Volt
RE: This article, and those of amps, watts, etc, is very precise and I'm sure it is good reference material for engineers However as a non engineer I didn't really get anything out of this. It seems to assume knowledge of the theory of electricity and power, which I don't have.
An encyclopedic entry accomplishes nothing if it doesn't explain the subject to the common person or student, especially considering they make up the majority of viewers and should be the main beneficiaries of this site. I call on anyone reading this to post and repost the following simple explanation every time it gets deleted by poetic "engineers" who seem to care more about impressing each other with their concise definitions than helping the students and common folks that come here and just want to know what volts, amps, and watts are.
[edit] Hydraulic analogy
In the hydraulic analogy sometimes used to explain electric circuits by comparing them to water-filled pipes, voltage is likened to water pressure - it determines how fast the electrons will travel through the circuit. Current (in Amperes), in the same analogy, is a measure of the volume of water that flows past a given point, the rate of which is determined by the voltage, and the total output measured in Watts. The equation that brings all three components together is: Volts X Amperes = Watts
~~Wickimelon
[edit] Volt = Energy per Unit Charge?
Famous equation: P = IV, or watts equals current times voltage.
Simple math says Pt = IVt, where t equals time in seconds.
Another identity: I = C / t, or current equals coulombs (charge) per second.
Substituting back, we get: Pt = VC, or watts times time (which is energy) equals volts times coulombs: e = VC. In other words: V = e / C.
Thus, our units would seem to tell us that voltage is energy per unit charge, and, in fact, the electronvolt is a unit of energy equal to roughly 10-19 J. In my simple-minded layman's brain, this says to me that another way to think of voltage is as the average amount of energy carried per unit charge, i.e., the more excited the electron, the higher its voltage.
I find this view a lot easier to get my brain around than "electrostatic pressure" or some such, but, as a non-physicist, I have no idea if it is a view that makes any sense. I would appreciate comment from an actual physicist!
--Peterbstewart 18:54, 18 October 2006 (UTC)
[edit] Absolute voltage
When talking about voltages, we usually talk about the potential difference of two potentials, for example 1.5 V in a standard AA battery. Imagine another standard AA battery with 1.5 V - how can we be sure that both battery's potentials aren't at different absolute values (that is, one battery has the potential 100 V - 101.5 V while the other has 30000 V - 30001.5 V at one of its terminals)? I hope someone understands what I mean and may give me a clever answer. --Abdull 15:24, 12 December 2006 (UTC)
[edit] This article is awful
Sorry to tell you folks, but this article is atrociously bad. Do you think definitions like
"the potential difference across a conductor when a current of one ampere dissipates one watt of power"
are of any help to somebody trying to understand electrical fundamentals or basic concepts? Please. Let's get real and get this thing edited fast. Vitamin77 05:48, 18 March 2007 (UTC)
- Well, that is (apparently) its definition. The volt is just a unit, not a fundamental concept. Perhaps you're looking for Voltage? Melchoir 06:03, 18 March 2007 (UTC)
Obviously I understand that the quotation above is the formal definition of a volt, but the definition as phrased provides zero enlightenment to a person who is not already familiar with it--which should be the goal of an encyclopedia, especially one so accessible as the Wikipedia. What's needed is a definition that a normal person can understand and then build on. The meaning of terms used in the definition, like "ampere", "watt", "current", etc. needs to be grandly elucidated or this entire article needs to be re-conceptualized to make it accessible and meaningful--two things it currently is not. Vitamin77 18:37, 18 March 2007 (UTC)
- Well, if you have a better definition or explanation, put it in. Melchoir 19:18, 18 March 2007 (UTC)