Triazine

From Wikipedia, the free encyclopedia

The three isomers of triazine, with ring numbering
The three isomers of triazine, with ring numbering

A triazine is one of three organic chemicals, isomeric with each other, whose empirical formula is C3H3N3.

Contents

[edit] Structure

The triazine structure is a heterocyclic ring, analogous to the six-membered benzene ring but with three carbons replaced by nitrogens. The three isomers of triazine are distinguished from each other by the positions of their nitrogen atoms, and are referred to as 1,2,3-triazine, 1,2,4-triazine, and 1,3,5-triazine. Other aromatic nitrogen heterocycles are pyridines with 1 ring nitrogen atom, diazines with 2 nitrogen atoms in the ring and tetrazines with 4 ring nitrogen atoms. Triazines are weaker bases than pyridine.

[edit] Uses

The best known 1,3,5-triazine derivative is melamine with three amino substituents used in the manufacture of resins. Another triazine extensively used in resins is benzoguanamine. Triazine compounds are often used as the basis for various herbicides such as cyanuric chloride (2,4,6-trichloro-1,3,5-triazine). Chlorine substituted triazines are also used as reactive dyes. These compounds react through a chlorine group with hydroxyl groups present in cellulose fibres in nucleophilic substitution, the other triazine positions contain chromophores.

A series of 1,2,4-triazine derivatives known as BTPs have been considered in the liquid-liquid extraction community as possible extractants for use in the advanced nuclear reprocessing of used fuel.[1][2][3][4][5] BTPs are molecules containing a pyridine ring bonded to two 1,2,4-triazin-3-yl groups.

[edit] Synthesis

1,2,3-Triazines can be synthesized by thermal rearrangement of 2-azidocyclopropenes. 1,2,4-Triazines are prepared from condensation of 1,2-dicarbonyl compounds with amidrazones. A classical triazine synthesis is also the Bamberger triazine synthesis. Symmetrical 1,3,5-triazines are prepared by trimerization of cyanogen chloride or cyanimide. Benzoguanamine (with one phenyl and 2 amino substituents) is synthesised from benzonitrile and dicyandiamide in dimethoxyethane with potassium hydroxide.[6]

[edit] Reactions

Although triazines are aromatic compounds the resonance energy is much lower than in benzene, and electrophilic aromatic substitution is difficult but nucleophilic aromatic substitution more frequent. 2,4,6-Trichloro-1,3,5-triazine is easily hydrolyzed to cyanuric acid by heating with water at elevated temperatures. 2,4,6-Tris(phenoxy)-1,3,5-triazine reacts with aliphatic amines in aminolysis, and this reaction can be used to give dendrimers.[7] Pyrolysis of melamine under expulsion of ammonia gives the tri-s-triazine melem.[8] Cyanuric chloride assists in the amidation of carboxylic acids.[9]

The 1,2,4-triazines can react with electron-rich dienophiles in an inverse electron demand Diels-Alder reaction. This forms a bicylic intermediate which normally then extrudes out a molecule of nitrogen gas to form an aromatic ring again. In this way the 1,2,4-triazines can be reacted with alkynes to form pyridine rings. An alternative to using an alkyne is to use norbornadiene which can be thought of as a masked alkyne.

[edit] Notes

  1. ^ [1]
  2. ^ [2]
  3. ^ [3]
  4. ^ [4]
  5. ^ [5]
  6. ^ Benzoguanamine J. K. Simons and M. R. Saxton Organic Syntheses Coll. Vol. 4, p.78; Vol. 33, p.13 Article
  7. ^ Christian Dreyer, Alfred Blume, Monika Bauer, Jörg Bauer, Jens Neumann-Rodekirch Fourth International Electronic Conference on Synthetic Organic Chemistry (ECSOC-4), September 1-30, 2000 Article
  8. ^ Barbara Jürgens, Elisabeth Irran, Jürgen Senker, Peter Kroll, Helen Müller, and Wolfgang Schnick J. Am. Chem. Soc., 125 (34), 10288 -10300, 2003. Abstract
  9. ^ Triazine-Promoted Amidation of Various Carboxylic Acids Jeremy Schlarb 1999 Article

[edit] References

[edit] See also

In other languages