User:Tomruen/regular polychora

From Wikipedia, the free encyclopedia

Contents

[edit] NOTE: Most of this information has been transfered to tables in List of regular polytopes, just a bit more compactly, with only one name each.

In addition, I extend the 3D, and 5D sections similarly there as tables. Tom Ruen 02:02, 13 January 2006 (UTC)


Regular polychora are defined by the Schläfli symbol symbol {p,q,r}

{p,q,r} can be interpreted as:

  • {p}=Polygon face type (v/f)
  • {q,r}=Polyhedral vertex figure
  • {p,q}=Polyhedral cell type
  • {r}=Polygonal edge figure (c/e)
  • {r,q,p} = Dual polychora

[edit] Existence

The existence of a regular polychora {p,q,r} has three constraints:

  1. The cell {p,q} must be a regular polyhedron;
  2. The vertex figure {q,r} must be a regular polyhedron;
  3. The numbers p,q,r must satisfy the inequality:
    • sin(π/p) sin(π/r) ≥ cos(π/q)

Constraints (1) and (2) have 9 regular solids available:

These 9 regular solids, along with a permutation search with constraint (3) enumerate the 16 existing regular polychora, of which 6 are convex and 10 are nonconvex.

See also: List_of_regular_polytopes

[edit] Table

Here are 6 convex regular polychora and 10 nonconvex forms listed below, with their component counts and forms.

The Euler characteristic for convex regular polychora is: chi=V+F-E-C=0. Nonconvex polychora may or may not follow this. (See V+E-F-C column below)

# Name
Schläfli
symbol
{p,q,r}
V
{q,r}
E
{r}
F
{p}
C
{p,q}
V+E-F-C Dual
{r,q,p}
C1 5-cell
Pentachoron
Simplex
"Pen"
{3,3,3} 5
{3,3}
10
{3}
10
{3}
5
{3,3}
0 (C1) Self-dual
{3,3,3}
C2 8-cell
Tesseract
Hypercube
"Tes"
{4,3,3} 16
{3,3}
32
{3}
24
{4}
8
{4,3}
0 (C3) 16-cell
{3,4,4}
C3 16-cell
Hexadecachoron
Octaplex
"Hex"
{3,3,4} 8
{3,4}
24
{4}
32
{3}
16
{3,3}
0 (C2) 8-cell
{3,3,4}
C4 24-cell
Icositetrachoron
Orthocube
"Ico"
{3,4,3} 24
{4,3}
96
{3}
96
{3}
24
{3,4}
0 (C4) Self-dual
{3,4,3}
C5 120-cell
Hecatonicosachoron
Dodecaplex
"Hi"
{5,3,3} 600
{3,3}
1200
{3}
720
{5}
120
{5,3}
0 {C6) 600-cell
{3,3,5}
C6 600-cell
Hexacosichoron
Tetraplex
"Ex"
{3,3,5} 120
{3,5}
720
{5}
1200
{3}
600
{3,3}
0 (C5) 120-cell
{5,3,3}
N1 Great grand stellated 120-cell
Great grand stellated hecatonicosachoron
"Gogishi"
{5/2,3,3} 600
{3,3}
1200
{3}
720
{5/2}
120
{5/2,3}
0 (N2) Grand 600-cell
{3,3,5/2}
N2 Grand 600-cell
Grand hexacosichoron
"Gax"
{3,3,5/2} 120
{3,5/2}
720
{5/2}
1200
{3}
600
{3,3}
0 (N1) Great grand stellated 120-cell
{5/2, 3, 3}
N3 Great stellated 120-cell
Great stellated hecatonicosachoron
"Gishi"
{5/2,3,5} 120
{3,5}
720
{5}
720
{5/2}
120
{5/2,3}
0 (N4) Grand 120-cell
{5, 3, 5/2}
N4 Grand 120-cell
Grand hecatonicosachoron
"Gahi"
{5,3,5/2} 120
{3,5/2}
720
{5/2}
720
{5}
120
{5,3}
0 (N3) Great stellated 120-cell
{5/2, 3, 5}
N5 Grand stellated 120-cell
Grand stellated hecatonicosachoron
"Gashi"
{5/2,5,5/2} 120
{5,5/2}
720
{5/2}
720
{5/2}
120
{5/2,5}
0 (N5) Self-dual
{5/2,5,5/2}
N6 Small stellated 120-cell
Small stellated hecatonicosachoron
"Sishi"
{5/2,5,3} 120
{5,3}
1200
{3}
720
{5/2}
120
{5/2,5}
-480 (N7) Icosahedral 120-cell
{3, 5, 5/2}
N7 Icosahedral 120-cell
Faceted hexacosichoron
"Fix"
{3,5,5/2} 120
{5,5/2}
720
{5/2}
1200
{3}
120
{3,5}
480 (N6) Small stellated 120-cell
{5/2, 5, 3}
N8 Great icosahedral 120-cell
Great faceted hexacosichoron
"Gofix"
{3,5/2,5} 120
{5/2,5}
720
{5}
1200
{3}
120
{3,5/2}
480 (N9) Great grand 120-cell
{5, 5/2, 3}
N9 Great grand 120-cell
Great grand hecatonicosachoron
"Gaghi"
{5,5/2,3} 120
{5/2,3}
1200
{3}
720
{5}
120
{5, 5/2}
-480 (N8) Great icosahedral 120-cell
{3, 5/2, 5}
N10 Great 120-cell
Great hecatonicosachoron
"Gohi"
{5,5/2,5} 120
{5/2,5}
720
{5}
720
{5}
120
{5, 5/2}
0 (N10) Self-dual
{5, 5/2, 5}

[edit] Table2

Name
Image Schläfli
{p,q,r}
Coxeter-Dynkin
Cells
{p,q}
Faces
{p}
Edges
{r}
Vertices
{q,r}
χ Symmetry group Dual
{r,q,p}
Small stellated 120-cell {5/2,5,3}
Image:CD_dot.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_5.pngImage:CD_dot.pngImage:CD_5-2.pngImage:CD_ring.png
120
{5/2,5}
720
{5/2}
1200
{3}
120
{5,3}
-480 H4 Icosahedral 120-cell
Great 120-cell {5,5/2,5}
Image:CD_ring.pngImage:CD_5.pngImage:CD_dot.pngImage:CD_5-2.pngImage:CD_dot.pngImage:CD_5.pngImage:CD_dot.png
120
{5,5/2}
720
{5}
720
{5}
120
{5/2,5}
0 H4 Self-dual
Great stellated 120-cell {5/2,3,5}
Image:CD_dot.pngImage:CD_5.pngImage:CD_dot.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_5-2.pngImage:CD_ring.png
120
{5/2,3}
720
{5/2}
720
{5}
120
{3,5}
0 H4 Grand 120-cell
Grand 120-cell {5,3,5/2}
Image:CD_ring.pngImage:CD_5.pngImage:CD_dot.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_5-2.pngImage:CD_dot.png
120
{5,3}
720
{5}
720
{5/2}
120
{3,5/2}
0 H4 Great stellated 120-cell
Grand stellated 120-cell {5/2,5,5/2}
Image:CD_ring.pngImage:CD_5-2.pngImage:CD_dot.pngImage:CD_5.pngImage:CD_dot.pngImage:CD_5-2.pngImage:CD_dot.png
120
{5/2,5}
720
{5/2}
720
{5/2}
120
{5,5/2}
0 H4 Self-dual
Great grand 120-cell {5,5/2,3}
Image:CD_ring.pngImage:CD_5.pngImage:CD_dot.pngImage:CD_5-2.pngImage:CD_dot.pngImage:CD_3.pngImage:CD_dot.png
120
{5,5/2}
720
{5}
1200
{3}
120
{5/2,3}
-480 H4 Great icosahedral 120-cell
Great grand stellated 120-cell {5/2,3,3}
Image:CD_dot.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_5-2.pngImage:CD_ring.png
120
{5/2,3}
720
{5/2}
1200
{3}
600
{3,3}
0 H4 Grand 600-cell
Icosahedral 120-cell {3,5,5/2}
Image:CD_ring.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_5.pngImage:CD_dot.pngImage:CD_5-2.pngImage:CD_dot.png
120
{3,5}
1200
{3}
720
{5/2}
120
{5,5/2}
480 H4 Small stellated 120-cell
Great icosahedral 120-cell {3,5/2,5}
Image:CD_dot.pngImage:CD_5.pngImage:CD_dot.pngImage:CD_5-2.pngImage:CD_dot.pngImage:CD_3.pngImage:CD_ring.png
120
{3,5/2}
1200
{3}
720
{5}
120
{5/2,5}
480 H4 Great grand 120-cell
Grand 600-cell {3,3,5/2}
Image:CD_ring.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_3.pngImage:CD_dot.pngImage:CD_5-2.pngImage:CD_dot.png
600
{3,3}
1200
{3}
720
{5/2}
120
{3,5/2}
0 H4 Great grand stellated 120-cell

[edit] External link