Ted Ringwood
From Wikipedia, the free encyclopedia
Alfred Edward "Ted" Ringwood FRS (19 April 1930 - 12 November 1993) was an Australian geologist.
Contents |
[edit] Early Life
Born into a working class family in the Melbourne suburb of Kew in 1930. His father was a disabled First World War veteran, having suffered from trench feet as an 18 year old corporal. Despite his family suffering financially during the depression, Ted was actively encouraged to pursue his academic interests. Ted would gain his earliest insights into science from his grandfather, a self educated man with an interest in chemistry.At the age of 13, Ted was able to win an elite secondary school scholarship to Geelong Grammer. During his senior years at Geelong, Ted would explore his interest in geology, gaining admittance to study the subject at Melbourne University. Again securing scholarships to assist with his early years as an undergraduate, Ted was able to further his teriary studies with some measure of financial independence.
[edit] Initial Academic Career
Graduating with an MSc (Hons) in 1953, Ted and would immediately commence his PhD. During the 1950s, it was reletively uncommon to undertake a PhD in Australia. Ted would be awarded his PhD in 1956, aged only 26. The previous year he had completed two papers relating to the geology of the East Gippsland area in rural Victoria. Ted has also managed to have papers published in the American Journal of Science and the Geochimica et Cosmochimica Acta on magnesium silicate and germanate solid solutions and melting relationships; and a paper in Nature on the olivine to spinel transformation in the Earth's mantle. These endevours would soon lead to postdoctoral studies at Harvard in the United States between 1957 and 1958. Upon his return to Australia, Ted take up a new position with the recently established Department of Geophysics in the Research School of Earth Sciences at the Australian National University, the establishment at which he would eventually spend the majority of his working life at. In his early work, Ted had used germanate minerals as low-pressure analogues for high pressure polymorphs of silicate phases. These experimental insights allowed him to predict that polymorphic phase transitions in the common mantle minerals, olivine and pyroxene, would occur within the pressure regime of the Earth's Transition Zone. Phase transformations offered an alternative to postulating major chemical compositional layering in the Earth as a way of explaining the seismic velocity and density discontinuities across the Transition Zone.
[edit] ANU Discoveries
At ANU, Ted began experimental study of silicates at high pressure and in 1959 demonstrated that the iron end-member Fe2SiO4 of olivine indeed transformed to the denser spinel structure, as did numerous germanate and germanate-silicate solid solutions. In 1966 Ted and Alan Major, the technical officer who worked with him from 1964 to 1993, synthesised the spinel form of (Mg0.8Fe0.2)SiO4. This was especially significant because this composition approximates that of the Earth's mantle. Also in 1966, the transformation of pure forsterite (Mg2SiO4) to spinel-like b-phase was achieved. Thus the nature of the 400 km seismic discontinuity (at the top of the Transition Zone) was established beyond reasonable doubt. Further important polymorphic transitions - of pyroxene to garnet structure, of calcium silicate to perovskite, and of magnesium silicate (pyroxene) to perovskite structure were demonstrated by Ted and his colleague Dr Lin-gun (John) Liu at ANU in the 1970s. Several different kinds of high pressure apparatus were employed for this purpose, including Bridgman anvils with extremely small internal strip-heaters and the diamond-anvil high pressure cell in which the sample is internally heated by an infra-red laser. It was characteristic of Ted that this persistent experimental approach to the determination of the mineralogy and chemical composition of the mantle was complemented by progressive refinement of conceptual models of mantle dynamics and, particularly, of the fate of cool, sinking lithospheric slabs.
Throughout the 1980s, in a series of rewarding collaborations with several Japanese postdoctoral fellows, Ted debated the issue of whole-mantle versus layered-mantle convection and argued in several major publications that descending slabs would be deflected within the Transition Zone. High-resolution seismic tomography later confirmed that view. Moreover, he presented a substantive case that no major compositional differences exist between upper and lower mantle and that the peridotitic composition inferred for the upper mantle was also appropriate for the lower mantle.
Ted Ringwood was not afraid to be wrong in his hypotheses or models but preferred that he should lead the rejection of an earlier idea and acceptance of a new one - rather than others should do so. His friend, Professor Albrecht Hofmann, Director of the Max Planck Institut für Chemie in Mainz, in delivering the Goldschmidt Medal citation to Ted in 1991, recounts how Ted was quick to recognise the importance of a particular concept and to pursue it tenaciously, 'sometimes in error, but never off course.' Additionally, with corporate support he invented and patented a new diamond-based cutting tool material suitable for hard-rock drilling and ultra-hard ceramic machining. Licensing and commercialization of this technology is now underway.
[edit] Syonroc
The late Sir Edward Bullard FRS, Professor of Geophysics at Cambridge University, further stimulated Ted's interest in the subject during a visit to Australia in 1977. At that time, most nations with nuclear-power programmes planned to consolidate and solidify HLW as an integral constituent of glass monoliths. Ted realised that this strategy might be less than ideal if glass wasteforms were ultimately to be buried deep underground. From a geosciences perspective, glass is not especially resistant to corrosion by circulating groundwaters. In contrast, certain ceramics might display advantageous properties. Ted accordingly drew on his reservoir of geochemical and mineralogical knowledge, and over the next eighteen months converged on and patented SYNROC (SYNthetic ROCk). SYNROC is a titania-based ceramic, the constituent minerals of which have the capacity to immobilize, in their crystal lattices, almost all of the radionuclides in HLW. Moreover, SYNROC's minerals also occur in nature, and so its longevity in diverse geological environments could be guaranteed. Ted called a press conference to announce his concept. To his surprise, he found himself under attack from all quarters. The 'greens', on the one hand, did not appreciate having their case for the intractability of nuclear waste management weakened by the advent of SYNROC. And the nuclear establishment did not welcome the criticism implicit in the announcement of 'an improved wasteform'.
In the context of its decision to permit the export of uranium, the Australian government also continued to support research into particular aspects of the nuclear fuel cycle. The government supported the construction and commissioning of a full-scale, non-radioactive demonstration SYNROC plant at the Australian Nuclear Science and Technology Organisation's (ANSTO) site in Sydney. ANSTO scaled up the fabrication process and also, over subsequent years, has carried out extensive scientific characterization and testing of SYNROC, both in Australia and via international collaborative agreements. The research, in which Ted continued to take an active interest, continues against a shift in waste management policy. Most nations have, for the time being, adopted the 'once-through' cycle, in which spent fuel is regarded as a waste product ultimately destined for encapsulation and geological internment. Reprocessing has been largely abandoned because it does not appear to be justified on economic grounds and thus the high level wastes for which SYNROC was designed are not a major aspect of the industry's future scenario.
[edit] Later Years
Ted Ringwood was Director of RSES from 1978 to 1983. He had great influence on the research directions of the Department of Geophysics and Geochemistry and then on the Research School of Earth Sciences. He was a strong supporter of the introduction of geophysical fluid dynamics in 1975 and of the addition of environmental geochemistry. Initially opposed to the proposal by Professor W. Compston to design and build a high-resolution ion microprobe within RSES (largely because of cost), Ted became a major supporter during his term as Director. Ted was a leading figure in Australian science. He contributed to broader scientific and social issues through his role as a senior ANU academic, membership of the Australian Academy of Science, and via national advisory committees. His work has been widely honoured, with many medals and prizes for achievement or 'Distinguished Lectures', and by election to Fellowships of numerous scientific societies (see below). Amongst his most prized awards were the Bowie Medal of the American Geophysical Union in 1974 (he was the youngest scientist to have received the medal) and the Goldschmidt Medal of the Geochemical Society. Perhaps most significantly, in 1991, he was presented with the Feltrinelli International Prize by the National Academy of Italy in the Corsini Palace in Rome. This prize is awarded in a five-year cycle to the fields of Science, Medicine, Art, Literature and Humanities. Previous recipients have included J.B.S. Haldane, Igor Stravinsky, Henry Moore and Thomas Mann. Ted was the first earth scientist to receive the Prize since 1966, and it is a fitting tribute to his stature. It is appropriate to quote from his address to the President and members of the Italian National Academy, and to members of the Italian Government, on the occasion of the award. 'It would be very rare that an individual scientist could claim the credit for recognition of this kind. The scientific output of an individual reflects not only his own efforts, but also, directly and indirectly, those of his colleagues, students, technicians, his institution and family. I've been extremely fortunate in all of these.... In particular I must pay tribute to the stimulating and supportive scientific environment provided by my own University.... I do not know of any other Institution where the conditions for research would have been so favourable.... Our understanding of the Earth in all her aspects has developed dramatically during the last 25 years. This has been an exhilarating period to have been an Earth Scientist. I feel very fortunate and fulfilled to have been able to participate in some of these developments.' During Ted's research into Synroc, he would work closely with his collegue Dr Sue Kesson, currently a visiting fellow at the Research School of Earth Sciences at ANU.
The one great love of Ted's life was the Earth - its origin, structure, dynamics and constitution. It was his profession, his pastime and his passion. His recreational pursuits in later life included camping in the Australian bush, and the pleasures of a beach-side holiday-house on the unspoiled south coast of New South Wales. He also became an accomplished and well-practised expert on the finer points of Australian wine.
Sadly, Ted died of lymphoma on 12 November 1993 at the age of 63. He is mourned by his wife Gun, his children Kristina and Peter, as well as a wide circle of friends and colleagues both at the Australian National University and amongst the discipline of Earth Sciences worldwide.
Alfred Edward (Ted) Ringwood was appointed Professor of Geophysics since 1963, and of Geochemistry in 1967 at the Research School of Earth Scices, Australian National University. He was Director of the School from 1978.