Table of derivatives

From Wikipedia, the free encyclopedia

Topics in calculus

Fundamental theorem
Limits of functions
Continuity
Vector calculus
Tensor calculus
Mean value theorem

Differentiation

Product rule
Quotient rule
Chain rule
Implicit differentiation
Taylor's theorem
Related rates
Table of derivatives

Integration

Lists of integrals
Improper integrals
Integration by: parts, disks,
cylindrical shells, substitution,
trigonometric substitution

The primary operation in differential calculus is finding a derivative. This table lists derivatives of many functions. In the following, f and g are differentiable functions from the real numbers, and c is a real number. These formulas are sufficient to differentiate any elementary function.

Contents

[edit] General differentiation rules

Main article: Differentiation rules
Linearity
\left({cf}\right)' = cf'
\left({f + g}\right)' = f' + g'
Product rule
\left({fg}\right)' = f'g + fg'
Quotient rule
\left({f \over g}\right)' = {f'g - fg' \over g^2}, \qquad g \ne 0
Chain rule
(f \circ g)' = (f' \circ g)g'

[edit] Derivatives of simple functions

{d \over dx} c = 0
{d \over dx} x = 1
{d \over dx} cx = c
{d \over dx} |x| = {|x| \over x} = \sgn x,\qquad x \ne 0
{d \over dx} x^c = cx^{c-1} \qquad \mbox{where both } x^c \mbox{ and } cx^{c-1} \mbox { are defined}
{d \over dx} \left({1 \over x}\right) = {d \over dx} \left(x^{-1}\right) = -x^{-2} = -{1 \over x^2}
{d \over dx} \left({1 \over x^c}\right) = {d \over dx} \left(x^{-c}\right) = -{c \over x^{c+1}}
{d \over dx} \sqrt{x} = {d \over dx} x^{1\over 2} = {1 \over 2} x^{-{1\over 2}}  = {1 \over 2 \sqrt{x}}, \qquad x > 0

[edit] Derivatives of exponential and logarithmic functions

{d \over dx} c^x = {c^x \ln c},\qquad c > 0
{d \over dx} e^x = e^x
{d \over dx} \log_c x = {1 \over x \ln c},\qquad c > 0, c \ne 1
{d \over dx} \ln x = {1 \over x},\qquad x > 0
{d \over dx} \ln |x| = {1 \over x}
{d \over dx} x^x = x^x(1+\ln x)

[edit] Derivatives of trigonometric functions

{d \over dx} \sin x = \cos x
{d \over dx} \cos x = -\sin x
{d \over dx} \tan x = \sec^2 x = { 1 \over \cos^2 x}


{d \over dx} \sec x = \tan x \sec x
{d \over dx} \cot x = -\csc^2 x = { -1 \over \sin^2 x}
{d \over dx} \csc x = -\csc x \cot x
{d \over dx} \arcsin x = { 1 \over \sqrt{1 - x^2}}
{d \over dx} \arccos x = {-1 \over \sqrt{1 - x^2}}
{d \over dx} \arctan x = { 1 \over 1 + x^2}
{d \over dx} \arcsec x = { 1 \over |x|\sqrt{x^2 - 1}}
{d \over dx} \arccot x = {-1 \over 1 + x^2}
{d \over dx} \arccsc x = {-1 \over |x|\sqrt{x^2 - 1}}

[edit] Derivatives of hyperbolic functions

{d \over dx} \sinh x = \cosh x = \frac{e^x + e^{-x}}{2}
{d \over dx} \cosh x = \sinh x = \frac{e^x - e^{-x}}{2}
{d \over dx} \tanh x = \operatorname{sech}^2\,x
{d \over dx}\,\operatorname{sech}\,x = - \tanh x\,\operatorname{sech}\,x
{d \over dx}\,\operatorname{coth}\,x = -\,\operatorname{csch}^2\,x
{d \over dx}\,\operatorname{csch}\,x = -\,\operatorname{coth}\,x\,\operatorname{csch}\,x
{d \over dx}\,\operatorname{arcsinh}\,x = { 1 \over \sqrt{x^2 + 1}}
{d \over dx}\,\operatorname{arccosh}\,x = { 1 \over \sqrt{x^2 - 1}}
{d \over dx}\,\operatorname{arctanh}\,x = { 1 \over 1 - x^2}
{d \over dx}\,\operatorname{arcsech}\,x = { -1 \over x\sqrt{1 - x^2}}
{d \over dx}\,\operatorname{arccoth}\,x = { 1 \over 1 - x^2}
{d \over dx}\,\operatorname{arccsch}\,x = {-1 \over |x|\sqrt{1 + x^2}}