From Wikipedia, the free encyclopedia
This is a table of Clebsch-Gordan coefficients. The overall sign of the coefficients for each set of constant j1, j2, j is arbitrary to some degree and has been fixed according to the Condon-Shortley and Wigner sign convention as discussed by Baird and Biedenharn.
Contents
- 1 references
- 2 j1=1/2, j2=1/2
- 3 j1=1, j2=1/2
- 4 j1=1, j2=1
- 5 j1=3/2, j2=1/2
- 6 j1=3/2, j2=1
- 7 j1=3/2, j2=3/2
- 8 j1=2, j2=1/2
- 9 j1=2, j2=1
- 10 j1=2, j2=3/2
- 11 j1=2, j2=2
- 12 j1=5/2, j2=1/2
- 13 j1=5/2, j2=1
- 14 j1=5/2, j2=3/2
- 15 j1=5/2, j2=2
|
[edit] references
- A kind of script to generate these coefficients can be found at : [1]
Tables with the same sign convention are in K Hagiwara et al, Phys Rev D 66 (2002) 010001 (PDF) and CGord (ASCII).
These are the answers to
- ,
explicitly
For brevity, answers for m < 0 are omitted, use that (as far as I can see from the tables generated)
- .
[edit] j1=1/2, j2=1/2
m=1 |
j= |
m1, m2= |
|
1 |
1/2, 1/2 |
|
|
[edit] j1=1, j2=1/2
m=3/2 |
j= |
m1, m2= |
|
3/2 |
1, 1/2 |
|
|
[edit] j1=1, j2=1
m=2 |
j= |
m1, m2= |
|
2 |
1, 1 |
|
|
[edit] j1=3/2, j2=1/2
m=2 |
j= |
m1, m2= |
|
2 |
3/2, 1/2 |
|
|
[edit] j1=3/2, j2=1
m=5/2 |
j= |
m1, m2= |
|
5/2 |
3/2, 1 |
|
|
m=1/2 |
j= |
m1, m2= |
|
5/2 |
3/2 |
1/2 |
3/2, -1 |
|
|
|
1/2, 0 |
|
|
|
-1/2, 1 |
|
|
|
|
[edit] j1=3/2, j2=3/2
m=3 |
j= |
m1, m2= |
|
3 |
3/2, 3/2 |
|
|
m=1 |
j= |
m1, m2= |
|
3 |
2 |
1 |
3/2, -1/2 |
|
|
|
1/2, 1/2 |
|
|
|
-1/2, 3/2 |
|
|
|
|
m=0 |
j= |
m1, m2= |
|
3 |
2 |
1 |
0 |
3/2, -3/2 |
|
|
|
|
1/2, -1/2 |
|
|
|
|
-1/2, 1/2 |
|
|
|
|
-3/2, 3/2 |
|
|
|
|
|
[edit] j1=2, j2=1/2
m=5/2 |
j= |
m1, m2= |
|
5/2 |
2, 1/2 |
|
|
[edit] j1=2, j2=1
m=3 |
j= |
m1, m2= |
|
3 |
2, 1 |
|
|
[edit] j1=2, j2=3/2
m=7/2 |
j= |
m1, m2= |
|
7/2 |
2, 3/2 |
|
|
m=3/2 |
j= |
m1, m2= |
|
7/2 |
5/2 |
3/2 |
2, -1/2 |
|
|
|
1, 1/2 |
|
|
|
0, 3/2 |
|
|
|
|
m=1/2 |
j= |
m1, m2= |
|
7/2 |
5/2 |
3/2 |
1/2 |
2, -3/2 |
|
|
|
|
1, -1/2 |
|
|
|
|
0, 1/2 |
|
|
|
|
-1, 3/2 |
|
|
|
|
|
[edit] j1=2, j2=2
m=4 |
j= |
m1, m2= |
|
4 |
2, 2 |
|
|
m=1 |
j= |
m1, m2= |
|
4 |
3 |
2 |
1 |
2, -1 |
|
|
|
|
1, 0 |
|
|
|
|
0, 1 |
|
|
|
|
-1, 2 |
|
|
|
|
|
m=0 |
j= |
m1, m2= |
|
4 |
3 |
2 |
1 |
0 |
2, -2 |
|
|
|
|
|
1, -1 |
|
|
|
|
|
0, 0 |
|
|
|
|
|
-1, 1 |
|
|
|
|
|
-2, 2 |
|
|
|
|
|
|
[edit] j1=5/2, j2=1/2
m=3 |
j= |
m1, m2= |
|
3 |
5/2, 1/2 |
|
|
[edit] j1=5/2, j2=1
m=7/2 |
j= |
m1, m2= |
|
7/2 |
5/2, 1 |
|
|
m=3/2 |
j= |
m1, m2= |
|
7/2 |
5/2 |
3/2 |
5/2, -1 |
|
|
|
3/2, 0 |
|
|
|
1/2, 1 |
|
|
|
|
m=1/2 |
j= |
m1, m2= |
|
7/2 |
5/2 |
3/2 |
3/2, -1 |
|
|
|
1/2, 0 |
|
|
|
-1/2, 1 |
|
|
|
|
[edit] j1=5/2, j2=3/2
m=4 |
j= |
m1, m2= |
|
4 |
5/2, 3/2 |
|
|
m=2 |
j= |
m1, m2= |
|
4 |
3 |
2 |
5/2, -1/2 |
|
|
|
3/2, 1/2 |
|
|
|
1/2, 3/2 |
|
|
|
|
m=1 |
j= |
m1, m2= |
|
4 |
3 |
2 |
1 |
5/2, -3/2 |
|
|
|
|
3/2, -1/2 |
|
|
|
|
1/2, 1/2 |
|
|
|
|
-1/2, 3/2 |
|
|
|
|
|
m=0 |
j= |
m1, m2= |
|
4 |
3 |
2 |
1 |
3/2, -3/2 |
|
|
|
|
1/2, -1/2 |
|
|
|
|
-1/2, 1/2 |
|
|
|
|
-3/2, 3/2 |
|
|
|
|
|
[edit] j1=5/2, j2=2
m=9/2 |
j= |
m1, m2= |
|
9/2 |
5/2, 2 |
|
|
m=5/2 |
j= |
m1, m2= |
|
9/2 |
7/2 |
5/2 |
5/2, 0 |
|
|
|
3/2, 1 |
|
|
|
1/2, 2 |
|
|
|
|
m=3/2 |
j= |
m1, m2= |
|
9/2 |
7/2 |
5/2 |
3/2 |
5/2, -1 |
|
|
|
|
3/2, 0 |
|
|
|
|
1/2, 1 |
|
|
|
|
-1/2, 2 |
|
|
|
|
|
m=1/2 |
j= |
m1, m2= |
|
9/2 |
7/2 |
5/2 |
3/2 |
1/2 |
5/2, -2 |
|
|
|
|
|
3/2, -1 |
|
|
|
|
|
1/2, 0 |
|
|
|
|
|
-1/2, 1 |
|
|
|
|
|
-3/2, 2 |
|
|
|
|
|
|
Image:CG table.jpeg