Symmetric equilibrium

From Wikipedia, the free encyclopedia

C D
C 2, 2 0, 3
D 3, 0 1, 1

In game theory, a symmetric equilibrium is an equilibrium where both players use the same strategy (possibly mixed) in the equilibrium. In the Prisoner's Dilemma game pictured to the right, the only Nash equilibrium is (D, D). Since both players use the same strategy, the equilibrium is symmetric.

Symmetric equilibria have important properties. Only symmetric equilibria can be evolutionarily stable states in single population models.

[edit] See also



 view  Topics in game theory

Definitions

Normal form game · Extensive form game · Cooperative game · Information set · Preference

Equilibrium concepts

Nash equilibrium · Subgame perfection · Bayes-Nash · Trembling hand · Proper equilibrium · Epsilon-equilibrium · Correlated equilibrium · Sequential equilibrium · Quasi-perfect equilibrium · ESS · Risk dominance

Strategies

Dominant strategies · Mixed strategy · Tit for tat · Grim trigger

Classes of games

Symmetric game · Perfect information · Dynamic game · Repeated game · Signaling game · Cheap talk · Zero-sum game · Mechanism design

Games

Prisoner's dilemma · Coordination game · Chicken · Battle of the sexes · Stag hunt · Matching pennies · Ultimatum game · Minority game · Rock, Paper, Scissors · Pirate game · Dictator game · Public goods game · Nash bargaining game

Theorems

Minimax theorem · Purification theorems · Folk theorem · Revelation principle · Arrow's Theorem

Related topics

Mathematics · Economics · Behavioral economics · Evolutionary game theory · Population genetics · Behavioral ecology · Adaptive dynamics · List of game theorists