Talk:Square root of a matrix
From Wikipedia, the free encyclopedia
This article states that Cholesky decomposition gives the square root. This is, I think, a mistake. B.B = A and L.L^T = A are not the same, and B will not equal L, unless L is diagonal. c.f. http://yarchive.net/comp/sqrtm.html I have edited this article appropriately --Winterstein 11:03, 26 March 2007 (UTC)
- well, the Cholesky decomposition gives a square root. the term "square root" are used in different senses in the two sections. Mct mht 11:09, 26 March 2007 (UTC)
The description on calculating the square root of a diagonizable matrix could be improved.
Currently is takes the matrix of eigen vectors as a given, then takes steps to calculate the eigen values from this. It is a very rare situation to have eigen vectors before you have eigen values. They are often calculated simultaneously or for small matrices the eigen values are found first, by finding the roots of the characteristic polynomial.
I realize it is easier to describe the step from eigen vectors to eigen values in matrix-notation tah the other way around, but the description should decide whether it wants to be a recipe or a theorem. If it's a recipe, it should have practical input and if its a theorem, the eigenvalues should be given alongside the eigenvectors.
Please comment if you believe this to be a bad idea. I will fix the article in some weeks if no one stops me - if I remember. :-) -- Palmin
- Good point. Please do fix it. As an alternative, perhaps consider diagonalization as one step (and refer to diagonalizable matrix), but if you think it's better to spell it out in more detail, be my guest! -- Jitse Niesen (talk) 00:34, 15 March 2007 (UTC)