Sphericity

From Wikipedia, the free encyclopedia

Sphericity is a measure of how spherical an object is. As such, it is a specific example of a compactness measure of a shape. Defined by Wadell in 1932, the sphericity, Ψ, of a particle is the ratio of the surface area of a sphere (with the same volume as the given particle) to the surface area of the particle:

\Psi = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p}

where Vp is volume of the particle and Ap is the surface area of the particle

Contents

[edit] Ellipsoidal Objects

See also: Earth radius

The sphericity, Ψ, of an oblate spheroid (similar to the shape of the planet Earth or a Reese's Pieces candy) is defined as such:

\Psi =  \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p} =  \frac{2\sqrt[3]{ab^2}}{a+\frac{b^2}{\sqrt{a^2-b^2}}\ln{(\frac{a+\sqrt{a^2-b^2}}b)}}

(where a, b are the semi-major, semi-minor axes, respectively.

[edit] Derivation

Wadell (1932) defined Sphericity, Ψ, as the surface area of a sphere of the same volume as the particle divided by the actual surface area of the particle.

First we need to write surface area of the sphere, As in terms of the volume of the particle, Vp

A_{s}^3 = \left(4 \pi r^2\right)^3 = 4^3 \pi^3 r^6 = 4 \pi \left(4^2 \pi^2 r^6\right) = 4 \pi \cdot 3^2 \left(\frac{4^2 \pi^2}{3^2} r^6\right) = 36 \pi \left(\frac{4 \pi}{3} r^3\right)^2 = 36\,\pi V_{p}^2

therefore

A_{s} = \left(36\,\pi V_{p}^2\right)^{\frac{1}{3}} = 36^{\frac{1}{3}} \pi^{\frac{1}{3}} V_{p}^{\frac{2}{3}} = 6^{\frac{2}{3}} \pi^{\frac{1}{3}} V_{p}^{\frac{2}{3}} = \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}}

hence we define Ψ as:

\Psi = \frac{A_s}{A_p} = \frac{ \pi^{\frac{1}{3}} \left(6V_{p}\right)^{\frac{2}{3}} }{A_{p}}

[edit] Sphericity of common objects

Name Picture Volume Area Sphericity
Platonic Solids
tetrahedron Tetrahedron \frac{\sqrt{2}}{12}\,s^3 \sqrt{3}\,s^2 \left(\frac{\pi}{6\sqrt{3}}\right)^{\frac{1}{3}} \approx 0.671
cube (hexahedron) Hexahedron (cube) \,s^3 6\,s^2

\left( \frac{\pi}{6} \right)^{\frac{1}{3}} \approx 0.806

octahedron Octahedron \frac{1}{3} \sqrt{2}\, s^3 2 \sqrt{3}\, s^2

\left( \frac{\pi}{3\sqrt{3}} \right)^{\frac{1}{3}} \approx 0.846

dodecahedron Dodecahedron \frac{1}{4} \left(15 + 7\sqrt{5}\right)\, s^3 3 \sqrt{25 + 10\sqrt{5}}\, s^2

\left( \frac{\left(15 + 7\sqrt{5}\right)^2 \pi}{12\left(25+10\sqrt{5}\right)^{\frac{3}{2}}} \right)^{\frac{1}{3}} \approx 0.968

icosahedron Icosahedron \frac{5}{12}\left(3+\sqrt{5}\right)\, s^3 5\sqrt{3}\,s^2 \left( \frac{ \left(3 + \sqrt{5} \right)^2 \pi}{60\sqrt{3}} \right)^{\frac{1}{3}} \approx 0.939
Round Shapes
ideal cone
(h=2\sqrt{2}r)
\frac{1}{3} \pi\, r^2 h

= \frac{2\sqrt{2}}{3} \pi\, r^3

\pi\, r (r + \sqrt{r^2 + h^2})

= 4 \pi\, r^2

\left( \frac{1}{2} \right)^{\frac{1}{3}} \approx 0.794
hemisphere
(half sphere)
\frac{2}{3} \pi\, r^3 3 \pi\, r^2

\left( \frac{16}{27} \right)^{\frac{1}{3}} \approx 0.840

ideal cylinder
(h=2\,r)
\pi r^2 h = 2 \pi\,r^3 2 \pi r ( r + h ) = 6 \pi\,r^2

\left( \frac{2}{3} \right)^{\frac{1}{3}} \approx 0.874

ideal torus
(R = r)
2 \pi^2 R r^2 = 2 \pi^2 \,r^3 4 \pi^2 R r = 4 \pi^2\,r^2

\left( \frac{9}{4 \pi} \right)^{\frac{1}{3}} \approx 0.894

sphere \frac{4}{3} \pi r^3 4 \pi\,r^2

1\,

[edit] External links

In other languages