Snub hexagonal tiling

From Wikipedia, the free encyclopedia

Snub hexagonal tiling
Snub hexagonal tiling
Type Uniform tiling
Vertex figure 3.3.3.3.6
Schläfli symbol s{6,3}
Wythoff symbol | 6 3 2
Coxeter-Dynkin Image:CDW_hole.pngImage:CDW_6.pngImage:CDW_hole.pngImage:CDW_3.pngImage:CDW_hole.png
Symmetry p6
Dual Floret pentagonal tiling
Properties Vertex-transitive
Snub hexagonal tiling
3.3.3.3.6

In geometry, the Snub hexagonal tiling (or snub trihexagonal tiling) is a semiregular tiling of the Euclidean plane. There are four triangles and one hexagon on each vertex. It has Schläfli symbol of s{3,6}.

There are 3 regular and 8 semiregular tilings in the plane. This is the only one of the semiregular tilings which does not have a reflection as a symmetry.

This tiling is topologically related as a part of sequence of snubbed polyhedra with vertex figure (3.3.3.3.n).


(3.3.3.3.3)

(3.3.3.3.4)

(3.3.3.3.5)

3.3.3.3.6

3.3.3.3.7

There is only one uniform coloring of a snub hexagonal tiling. (Naming the colors by indices (3.3.3.3.6): 11213.)

[edit] See also

[edit] References

  • Grünbaum, Branko ; and Shephard, G. C. (1987). Tilings and Patterns. New York: W. H. Freeman. ISBN 0-716-71193-1.  (Chapter 2.1: Regular and uniform tilings, p.58-65)
  • Williams, Robert The Geometrical Foundation of Natural Structure: A Source Book of Design New York: Dover, 1979. p39