Siegel upper half-plane

From Wikipedia, the free encyclopedia

In mathematics, a Siegel upper half-space is the set of n×n symmetric matrices over the real number field whose imaginary part is positive definite. The name is for Carl Ludwig Siegel.

For example, when n = 1, the Siegel upper half-space is the upper half-plane.

There is a group action of the symplectic group

Spn(R)

on the Siegel upper half-space, where

M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_{n}(\mathbf{R}).

Define

M\cdot Z = (CZ + D)^{-1} (AZ+B).