Shifted Gompertz distribution

From Wikipedia, the free encyclopedia

Shifted Gompertz
Probability density function
Probability density plots of shifted Gompertz distributions
Cumulative distribution function
Cumulative distribution plots of shifted Gompertz distributions
Parameters b > 0 scale (real)
η > 0 shape (real)
Support x \in \mathbb{R}^+
Probability density function (pdf) b e^{-bx} e^{-\eta e^{-bx}}\left[1 + \eta\left(1 - e^{-bx}\right)\right]
Cumulative distribution function (cdf) \left(1 - e^{-bx}\right)e^{-\eta e^{-bx}}
Mean (-1/b)\{\mathrm{E}[\ln(X)] - \ln(\eta)\}\,

where X = \eta e^{-bx}\, and \begin{align}\mathrm{E}[\ln(X)] =& [1 {+} 1 / \eta]\!\!\int_0^\eta \!\!\!\! e^{-X}[\ln(X)]dX\\ &- 1/\eta\!\! \int_0^\eta \!\!\!\! X e^{-X}[\ln(X)] dX \end{align}

Median
Mode 0\, for \eta \leq 0.5\,, (-1/b)\ln(z^\star)\, for \eta > 0.5\,wherez^\star = [3 + \eta - (\eta^2 + 2\eta + 5)^{1/2}]/(2\eta)
Variance (1/b^2)(\mathrm{E}\{[\ln(X)]^2\} - (\mathrm{E}[\ln(X)])^2)\,

where X = \eta e^{-bx}\, and \begin{align}\mathrm{E}\{[\ln(X)]^2\} =& [1 {+} 1 / \eta]\!\!\int_0^\eta \!\!\!\! e^{-X}[\ln(X)]^2 dX\\ &- 1/\eta \!\!\int_0^\eta \!\!\!\! X e^{-X}[\ln(X)]^2 dX \end{align}

Skewness
Excess kurtosis
Entropy
Moment-generating function (mgf)
Characteristic function

The shifted Gompertz distribution is the distribution of the largest order statistic of two independent random variables which are distributed exponential and Gompertz with parameters b and b and η respectively. It has been used as a model of adoption of innovation.

Contents

[edit] Specification

[edit] Probability density function

The probability density function of the shifted Gompertz distribution is:

f(x;b,\eta) = b e^{-bx} e^{-\eta e^{-bx}}\left[1 + \eta\left(1 - e^{-bx}\right)\right] \mathrm{for}\ x > 0 \,\!

where b > 0 is the scale parameter and η > 0 is the shape parameter of the shifted Gompertz distribution.

[edit] Cumulative distribution function

The cumulative distribution function of the shifted Gompertz distribution is:

F(x;b,\eta) = \left(1 - e^{-bx}\right)e^{-\eta e^{-bx}} \mathrm{for}\ x > 0 \,\!

[edit] Properties

The shifted Gompertz distribution is right-skewed for all values of η.

[edit] Shapes

The shifted Gompertz density function can take on different shapes depending on the values of the shape parameter η:

  • \eta \leq 0.5\, the probability density function has mode 0.
  • \eta > 0.5\, the probability density function has the mode at (-1/b)\ln(z^\star)\,, 0 < z^\star < 1 where z^\star\, is the smallest root of \eta^2z^2 - \eta(3 + \eta)z + \eta + 1 = 0\, which is z^\star = [3 + \eta - (\eta^2 + 2\eta + 5)^{1/2}]/(2\eta)

[edit] Related distributions

If η varies according to a gamma distribution with shape parameter α and scale parameter β (mean = αβ), the cumulative distribution function is Gamma/Shifted Gompertz.

[edit] See also

[edit] References

Bemmaor, Albert C. (1994), "Modeling the Diffusion of New Durable Goods: Word-of-Mouth Effect Versus Consumer Heterogeneity", in G. Laurent, G.L. Lilien & B. Pras, Research Traditions in Marketing, Boston: Kluwer Academic Publishers.

Van Den Bulte, Christophe; Stefan Stremersch (2004). "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test". Marketing Science 23 (4): 530–544. 

Chandrasekaran, Deepa & Gerard J. Tellis (2007), "A Critical Review of Marketing Research on Diffusion of New Products", in Naresh K. Malhotra, Review of Marketing Research, vol. 3, Armonk: M.E. Sharpe.

Image:Bvn-small.png Probability distributionsview  talk  edit ]
Univariate Multivariate
Discrete: BenfordBernoullibinomialBoltzmanncategoricalcompound PoissondegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomialmultivariate Polya
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-LogisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-square (scaled inverse chi-square)• inverse Gaussianinverse gamma (scaled inverse gamma) • KumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)normal inverse GaussianParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceshifted GompertzStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVariance-GammaVoigtvon MisesWeibullWigner semicircleWilks' lambda Dirichletinverse-WishartKentmatrix normalmultivariate normalmultivariate Studentvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropyphase-typeposteriorpriorquasisamplingsingular