Semimetric space

From Wikipedia, the free encyclopedia

In mathematics, a semimetric space generalizes the concept of a metric space by not requiring the condition of satisfying the triangle inequality. Thus, a semimetric space is a special case of a prametric space, being defined by a symmetric, discernible prametric. Because of its symmetry properties, in translations of Russian texts, a semimetric is sometimes called a symmetric.

[edit] Definition

A semimetric space (M,d) is a set M together with a function \mathrm{d}:M\times M\to\mathbb{R}^+ (called a semimetric) which satisfies the following conditions:

  1. \,\!\mathrm{d}(x,y)\ge0 (non-negativity);
  2. \,\!\mathrm{d}(x,y)=0\mbox{ if and only if }x=y (identity of indiscernibles);
  3. \,\!\mathrm{d}(x,y)=\mathrm{d}(y,x) (symmetry)

[edit] References

  • A.V. Arkhangelskii, L.S.Pontryagin, General Topology I, (1990) Springer-Verlag, Berlin. ISBN 3-540-18178-4
  • L.A. Steen, J.A.Seebach, Jr., Counterexamples in Topology, (1970) Holt, Rinehart and Winston, Inc..