Self-assembly
From Wikipedia, the free encyclopedia
Self-assembly is the fundamental principle which generates structural organization on all scales from molecules to galaxies. It is defined as reversible processes in which pre-existing parts or disordered components of a preexisting system form structures of patterns. Self-assembly can be classified as either static or dynamic. Static self-assembly is when the ordered state occurs when the system is in equilibrium and does not dissipate energy. Dynamic self-assembly is when the ordered state requires dissipation of energy. Examples of self-assembling system include weather patterns, solar systems, histogenesis and self-assembled monolayers. The most well-studied subfield of self-assembly is molecular self-assembly, but in recent years it has been demonstrated that self-assembly is possible with micro and millimeterscale structures lying in the interface between two liquids.
[edit] See also
[edit] External links and further reading
- Freeview Video 'Self-Assembly: Nature's Way To Do It' by Kuniaki Nagayama, A Royal Institution Lecture by the Vega Science Trust.
- Molecular Self-Assembly papers
- Beyond molecules: Self-assembly of mesoscopic and macroscopic components
- Whitesides, G. M. & Grzyboski, B. (2002) Science 295, 2418-2421.
- Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic Self-Assembly of DNA Sierpinski Triangles. PLoS Biol 2(12)
- C2 Wiki: Self Assembly from a computer programming perspective.