Image:Schwarz-Christoffel transformation.png
From Wikipedia, the free encyclopedia
Schwarz-Christoffel_transformation.png (580 × 177 pixel, file size: 7 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. The description on its description page there is shown below. | |
This Math image should be recreated using vector graphics as an SVG file. This has several advantages; see Commons:Images for cleanup for more information. If an SVG form of this image is already available, please upload it. After uploading an SVG, replace this template with template {{SupersededSVG|new image name.svg}} in this image. | |
Català | Česky | Dansk | Deutsch | English | Esperanto | Español | Français | Italiano | 日本語 | 한국어 | Nederlands | Polski | Português | Русский | العربية | 正體中文 | +/- |
Schwarz-Christoffel mapping of the semi-infinite strip to the upper half-plane.
[edit] Licsensing
I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide. In case this is not legally possible: Afrikaans | Alemannisch | Aragonés | العربية | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Ελληνικά | English | Español | Esperanto | Euskara | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردي | Latina | Lietuvių | Magyar | Bahasa Melayu | Nederlands | Norsk (bokmål) | Norsk (nynorsk) | 日本語 | Polski | Português | Ripoarish | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски | Svenska | ไทย | Türkçe | Українська | Tiếng Việt | Walon | 简体中文 | 繁體中文 | 粵語 | +/- |
This image was created by the following Matlab file:
zs = [ linspace(0.2, 0.2+1i) linspace(0.4, 0.4+1i) linspace(0.6, 0.6+1i) linspace(0.8, 0.8+1i) linspace(1.0, 1.0+1i) linspace(0.2i, 1.2+0.2i) linspace(0.4i, 1.2+0.4i) linspace(0.6i, 1.2+0.6i) linspace(0.8i, 1.2+0.8i) ]; zs = transpose(zs); zs2 = [ linspace(0, 0+1i) linspace(0i, 1.2+0i) linspace(1i, 1.2+1i) ]; zs2 = transpose(zs2); zetas = - 1/2 + 1/2*cosh(pi*zs); zetas2 = - 1/2 + 1/2*cosh(pi*zs2); clf; subplot('position', [0 0 0.4 0.4]); hold on; patch([-1 2 2 -1], [-1 -1 0 0], [0.7 0.7 0.7], 'EdgeColor', 'none'); patch([-1 2 2 -1], [1 1 2 2], [0.7 0.7 0.7], 'EdgeColor', 'none'); patch([-1 0 0 -1], [-1 -1 2 2], [0.7 0.7 0.7], 'EdgeColor', 'none'); plot(real(zs), imag(zs), 'r'); plot(real(zs2), imag(zs2), 'k', 'LineWidth', 2); plot([0 0], [0 1], 'ok', 'MarkerSize', 7, 'MarkerFaceColor', 'black'); axis([-0.2 1.2 -0.2 1.2]); axis off; annotation('arrow', [0.55 0.45], [0.18 0.18]); annotation('textbox', [0.45 0.18 0.1 0.1], 'String', '\itf', ... 'EdgeColor', 'none', 'HorizontalAlignment', 'center', ... 'FontSize', 20); subplot('position', [0.6 0 0.4 0.4]); hold on; patch([-3 2 2 -3], [-1 -1 0 0], [0.7 0.7 0.7], 'EdgeColor', 'none'); plot(real(zetas), imag(zetas), 'r'); plot(real(zetas2), imag(zetas2), 'k', 'LineWidth', 2); plot([-1 0], [0 0], 'ok', 'MarkerSize', 7, 'MarkerFaceColor', 'black'); axis([-2.5 1.5 -0.3 2]); axis off; print -depsc 'sc.eps';
The resulting EPS file was transformed to PNG by the following commands:
epstopdf sc.eps convert sc.pdf sc.png mv sc.png Schwarz-Christoffel_transformation.png