Image:Schwarz-Christoffel transformation.png

From Wikipedia, the free encyclopedia

No higher resolution available.

Schwarz-Christoffel_transformation.png (580 × 177 pixel, file size: 7 KB, MIME type: image/png)

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is attempting to create a freely licensed media file repository. You can help.
This Math image should be recreated using vector graphics as an SVG file. This has several advantages; see Commons:Images for cleanup for more information. If an SVG form of this image is already available, please upload it. After uploading an SVG, replace this template with template {{SupersededSVG|new image name.svg}} in this image.

Català | Česky | Dansk | Deutsch | English | Esperanto | Español | Français | Italiano | 日本語 | 한국어 | Nederlands | Polski | Português | Русский | العربية | 正體中文 | +/-

Schwarz-Christoffel mapping of the semi-infinite strip to the upper half-plane.

[edit] Licsensing

Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Ελληνικά | English | Español | Esperanto | Euskara | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردي | Latina | Lietuvių | Magyar | Bahasa Melayu | Nederlands | Norsk (bokmål) | Norsk (nynorsk) | 日本語 | Polski | Português | Ripoarish | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски | Svenska | ไทย | Türkçe | Українська | Tiếng Việt | | 简体中文 | 繁體中文 | 粵語 | +/-


This image was created by the following Matlab file:

zs = [ linspace(0.2, 0.2+1i)
       linspace(0.4, 0.4+1i)
       linspace(0.6, 0.6+1i)
       linspace(0.8, 0.8+1i)
       linspace(1.0, 1.0+1i) 
       linspace(0.2i, 1.2+0.2i)
       linspace(0.4i, 1.2+0.4i)
       linspace(0.6i, 1.2+0.6i)
       linspace(0.8i, 1.2+0.8i) ];
zs = transpose(zs);

zs2 = [ linspace(0, 0+1i)
        linspace(0i, 1.2+0i)
        linspace(1i, 1.2+1i) ];
zs2 = transpose(zs2);

zetas  = - 1/2 + 1/2*cosh(pi*zs);
zetas2 = - 1/2 + 1/2*cosh(pi*zs2);

clf;
subplot('position', [0 0 0.4 0.4]);
hold on;
patch([-1 2 2 -1], [-1 -1 0 0], [0.7 0.7 0.7], 'EdgeColor', 'none');
patch([-1 2 2 -1], [1 1 2 2], [0.7 0.7 0.7], 'EdgeColor', 'none');
patch([-1 0 0 -1], [-1 -1 2 2], [0.7 0.7 0.7], 'EdgeColor', 'none');
plot(real(zs), imag(zs), 'r');
plot(real(zs2), imag(zs2), 'k', 'LineWidth', 2);
plot([0 0], [0 1], 'ok', 'MarkerSize', 7, 'MarkerFaceColor', 'black');
axis([-0.2 1.2 -0.2 1.2]);
axis off;

annotation('arrow', [0.55 0.45], [0.18 0.18]);
annotation('textbox', [0.45 0.18 0.1 0.1], 'String', '\itf', ...
           'EdgeColor', 'none', 'HorizontalAlignment', 'center', ...
           'FontSize', 20);

subplot('position', [0.6 0 0.4 0.4]);
hold on;
patch([-3 2 2 -3], [-1 -1 0 0], [0.7 0.7 0.7], 'EdgeColor', 'none');
plot(real(zetas), imag(zetas), 'r');
plot(real(zetas2), imag(zetas2), 'k', 'LineWidth', 2);
plot([-1 0], [0 0], 'ok', 'MarkerSize', 7, 'MarkerFaceColor', 'black');
axis([-2.5 1.5 -0.3 2]);
axis off;
       
print -depsc 'sc.eps';

The resulting EPS file was transformed to PNG by the following commands:

epstopdf sc.eps
convert sc.pdf sc.png
mv sc.png Schwarz-Christoffel_transformation.png

The following pages on the English Wikipedia link to this file (pages on other projects are not listed):