Satellite constellation

From Wikipedia, the free encyclopedia

The GPS constellation calls for 24 satellites to be distributed equally among six circular orbital planes
The GPS constellation calls for 24 satellites to be distributed equally among six circular orbital planes

A group of electronic satellites working in concert is known as a satellite constellation. Such a constellation can be considered to be a number of satellites with coordinated ground coverage, operating together under shared control, synchronised so that they overlap well in coverage and complement rather than interfere with other satellites' coverage.

Low Earth orbiting satellites (LEOs) are often deployed in satellite constellations, because the coverage area provided by a single LEO satellite covers a small area, and the satellite travels at a high angular velocity to maintain its orbit. Many LEO satellites are needed to maintain continuous coverage over an area. This contrasts with geostationary satellites, where a single satellite, moving at the same angular velocity as the rotation of the Earth's surface, provides permanent coverage over a large area.

Examples of satellite constellations include the Global Positioning System (GPS), Galileo and GLONASS constellations for navigation and geodesy, the Iridium and Globalstar satellite telephony services, the Disaster Monitoring Constellation and RapidEye for remote sensing, the Orbcomm messaging service, Russian elliptic orbit Molniya and Tundra constellations, and the large-scale Teledesic and Skybridge broadband constellation proposals of the 1990s.

Broadband applications benefit from low-latency communications, so LEO satellite constellations provide an advantage over a geostationary satellite, where it typically takes 125 milliseconds for a signal to get from the ground to geostationary orbit, compared to 1–4 milliseconds for a LEO satellite. A LEO satellite constellation can also provide more system capacity by frequency reuse across its coverage, with spot beam frequency use being analogous to the frequency reuse of cellular radio towers.

Satellite constellation coverage and geometry – determining the minimum number of satellites needed to provide a service, and their orbits – is a field in itself.

A group of formation-flying satellites very close together and moving in almost identical orbits is known as a satellite cluster.

[edit] Example satellite constellations

[edit] External links

Satellite constellation simulation tools:

More information:

In other languages