Rule of sum
From Wikipedia, the free encyclopedia
In combinatorics, the rule of sum is a basic counting principle. Stated simply, it is the idea that if we have a ways of doing something and b ways of doing another thing and we can not do both at the same time, then there are a + b ways to choose one of the actions.
More formally, the rule of sum is a fact about set theory. It states that sum of the sizes of a finite collection of pairwise disjoint sets is the size of the union of these sets. That is, if S1,S2,...,Sn are pairwise disjoint sets, then we have: