Rotation of axes

From Wikipedia, the free encyclopedia

Rotation of Axes is a form of Euclidean transformation in which the entire xy-coordinate system is rotated in the counter-clockwise direction with respect to the origin (0, 0) through a scalar quantity denoted by θ.

With the exception of the degenerate cases, if a general second-degree equation has a Bxy term, then Ax^2\ +\ Bxy\ +\ Cy^2\ +\ Dx\ +\ Ey\ +\ F\ =\ 0 represents one of the 4 conic sections, namely, the circle, ellipse, hyperbola, and the parabola.

Contents

[edit] Rotation of Loci

If a locus is defined on the xy-coordinate system as \left(x,\ y\right), then it is denoted as \left(x^\prime\cos \theta\ -\ y^\prime\sin \theta,\ x^\prime\sin \theta\ +\ y^\prime\cos \theta\right) on the rotated x'y'-coordinate system.

[edit] Elimination of the xy-Term by the Rotation Formula

For a general, non-degenerate second-degree equation Ax^2\ +\ Bxy\ +\ Cy^2\ +\ Dx\ +\ Ey\ +\ F\ =\ 0, the Bxy term can be removed by rotating the xy-coordinate system by an angle θ, where

\cot 2\theta\ =\ \frac{A\ -\ C}{B}.

[edit] Derivation of the Rotation Formula

Ax^2\ +\ Bxy\ +\ Cy^2\ +\ Dx\ +\ Ey\ +\ F\ =\ 0,\ B \ne\ 0.

Now, the equation is rotated by a quantity θ, hence

A\left(x^\prime\cos \theta\ -\ y^\prime\sin \theta\right)^2\ +\ B\left(x^\prime\cos \theta\ -\ y^\prime\sin \theta\right)\left(x^\prime\sin \theta\ + y^\prime\cos \theta\right)\ +\ C\left(x^\prime\sin \theta\ +\ y^\prime\cos \theta\right)^2

\ +\ D\left(x^\prime\cos \theta\ -\ y^\prime\sin \theta\right)\ +\ E\left(x^\prime\sin \theta\ +\ y^\prime\cos \theta\right)\ +\ F\ =\ 0

Expanding, the equation becomes

A{x^\prime}^2\cos ^2\theta\ -\ 2Ax^\prime y^\prime\sin \theta\cos \theta\ +\ Ay^\prime\sin ^2\theta\ +\ B{x^\prime}^2\sin \theta\cos \theta\ +\ Bx^\prime y^\prime\cos ^2\theta

\ -\ Bx^\prime y^\prime\sin ^2\theta\ -\ {y^\prime}^2\cos ^2\theta\ +\ Dx^\prime\cos \theta\ -\ y^\prime\sin \theta\ +\ Ex^\prime\sin \theta\ +\ Ey^\prime\cos \theta\ +\ F\ =\ 0

Collecting like terms,

{x^\prime}^2\left(A\cos ^2\theta\ +\ B\sin \theta\cos \theta\ +\ C\sin ^2\theta\right)\ +\ x^\prime y^\prime\left\{B\left(\cos ^2\theta\ -\ \sin ^2\theta\right)\ - 2\left(A\ -\ C\right)\left(\sin \theta\cos \theta\right)\right\}

\ +\ {y^\prime}^2\left(A\sin ^2\theta\ -\ B\sin \theta\cos \theta\ +\ C\cos ^2\theta\right)\ +\ x^\prime\left(D\cos \theta\ +\ E\sin \theta\right)
\ +\ y^\prime\left(-D\sin \theta\ +\ E\cos \theta\right)\ +\ F\ =\ 0


In order to eliminate the x'y'-term, the coefficient of the x'y'-term must be set equal to 0.

\begin{matrix}B\left(\cos ^2\theta\ -\ \sin ^2\theta\right)\ -\ 2\left(A\ -\ C\right)\sin \theta\cos \theta\ &=& 0 \\ \\ B\cos 2\theta\ -\ \left(A\ -\ C\right)\sin 2\theta &=& 0 \\ \\ B\cos 2\theta &=& \left(A\ -\ C\right)\sin 2\theta \\ \\ \cos 2\theta &=& \frac{\left(A\ -\ C\right)\sin 2\theta}{B} \\ \\ \cot 2\theta &=& \frac{A\ -\ C}{B} \end{matrix}

[edit] Identifying Rotated Conic Sections

A non-degenerate conic section with the equation Ax^2\ +\ Bxy\ +\ Cy^2\ +\ Dx\ +\ Ey\ +\ F\ =\ 0 can be identified by evaluating the value of B^2\ -\ 4AC:

\begin{cases}\mbox{An Ellipse or a Circle},\ \mbox{if}\ B^2\ -\ 4AC\ <\ 0 \\                         \mbox{A Parabola},\ \mbox{if}\ B^2\ -\ 4AC\ =\ 0 \\                         \mbox{A Hyperbola},\ \mbox{if}\ B^2\ -\ 4AC\ >\ 0\end{cases}

[edit] See also