Rellich-Kondrachov theorem

From Wikipedia, the free encyclopedia

In mathematics, the Rellich-Kondrachov theorem is a compact embedding theorem concerning Sobolev spaces. It is named after the South-Tyrolian mathematician Franz Rellich.

[edit] Statement of the theorem

Let \Omega \subseteq \mathbb{R}^{n} be an open, bounded Lipschitz domain, and let 1 \leq p < n. Set

p^{*} := \frac{n p}{n - p}.

Then the Sobolev space W1,p(Ω) is a subspace of the Lp space L^{p^{*}} (\Omega) and is compactly embedded in Lq(Ω) for every 1 \leq q < p^{*}. In symbols,

W^{1, p} (\Omega) \subsetneq L^{p^{*}} (\Omega)

and

W^{1, p} (\Omega) \subset \subset L^{q} (\Omega) \mbox{ for } 1 \leq q < p^{*}.

[edit] Consequences

The Rellich-Kondrachov theorem may be used to prove the Poincaré inequality, which states that for u \in W^{1, p} (\Omega) (where Ω satisfies the same hypotheses as above),

\| u - u_{\Omega} \|_{L^{p} (\Omega)} \leq C \| \nabla u \|_{L^{p} (\Omega)}

for some constant C depending only on p and the geometry of the domain Ω, where

u_{\Omega} := \frac{1}{\mathrm{meas} (\Omega)} \int_{\Omega} u(x) \, \mathrm{d} x

denotes the mean value of u over Ω.

[edit] Reference

  • Evans, Lawrence C. (1998). Partial differential equations. Providence, RI: American Mathematical Society. ISBN 0-8218-0772-2.