Rectangular function
From Wikipedia, the free encyclopedia
The rectangular function (also known as the rectangle function, rect function, unit pulse, or the normalized boxcar function) is defined as,
Alternate definitions of the function define to be 0, 1, or undefined. We can also express the rectangular function in terms of the Heaviside step function, u(t):
or, alternatively:
The rectangular function is normalized:
The unitary Fourier transforms of the rectangular function are,
- ,
and, in terms of the normalized sinc function,
We can define the triangular function as the convolution of two rectangular functions:
- tri(t) = rect(t) * rect(t)
Viewing the rectangular function as a probability distribution function, its characteristic function is,
and its moment generating function is,
where sinh(t) is the hyperbolic sine function.