User:Raul654/proof

From Wikipedia, the free encyclopedia

Proof that 0 = -1

I stumbled across this in my high school Calculus BC class. Here's a challenge for my fellow math geeks - what is wrong here?


Given:

\int_ {} u\, dv = u * v - \int_ {} v\, du

Let \mathbf{dv} = \mathbf{sin(x) * dx}

Therefore, \mathbf{v} = - \mathbf{ cos(x)}

Let \mathbf{u} = \mathbf{sec(x)}

Therefore, \mathbf{du} = \mathbf{sec(x) * tan (x) * dx}

\int_ {} tan (x)\, dx = \int_ {} tan (x)\, dx

\int_ {} tan (x)\, dx = \int_ {} sec (x) * sin(x)\, dx

Substitute from above.

\int_ {} tan (x)\, dx = sec (x) * (- cos (x)) - \int_ {} - cos (x) * sec(x) * tan(x) \, dx

Sec(x) * cos(x) = 1

\int_ {} tan (x)\, dx = - 1 - \int_ {} - tan(x) \, dx

Group the minus signs.

\int_ {} tan (x)\, dx = - 1 + \int_ {} tan(x) \, dx

(Subtract the integral from each side)

\mathbf{0} = \mathbf{-1}

VoilĂ  - a logical inconsistency.