Image:Random-data-plus-trend-r2.png

From Wikipedia, the free encyclopedia

No higher resolution available.

Random-data-plus-trend-r2.png (601 × 447 pixel, file size: 9 KB, MIME type: image/png)

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is attempting to create a freely licensed media file repository. You can help.

La bildo estas kopiita de wikipedia:en. La originala priskribo estas:

Image of random data plus trend, with best-fit line and different smoothings


GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

العربية | Asturianu | Български | বাংলা | ইমার ঠার | Brezhoneg | Bosanski | Català | Sinugboanong Binisaya | Česky | Dansk | Deutsch | Ελληνικά | English | Esperanto | Español | Eesti | Euskara | فارسی | Suomi | Français | Galego | עברית | Hrvatski | Magyar | Bahasa Indonesia | Ido | Íslenska | Italiano | 日本語 | ქართული | 한국어 | Kurdî / كوردي | Latina | Lëtzebuergesch | Lietuvių | Bahasa Melayu | Nnapulitano | Nederlands | Norsk (nynorsk) | Norsk (bokmål) | Polski | Português | Română | Русский | Slovenčina | Slovenščina | Shqip | Српски | Svenska | తెలుగు | ไทย | Türkçe | Українська | اردو | Tiếng Việt | Volapük | 中文(简体) | 中文(繁體) | +/-


The data is 1000 points, with a trend of 1-in-100, with random normal noise of SD 10 superimposed. The red-line is the same data but averaged every 10 points. The blue line is every 100 points.

The r2 fit for the raw data is 0.08; for the 10-pt-filtered, 0.57; for 100-pt-filtered, 0.97.

For all series, the least squares fit line is virtually the same, with a slope of 0.01, as expected.

Ignoring autocorrelation, a confidence limit for the fit line is [0.0082, 0.0127] for the raw data (which include 0.01, as it should). For the 10-pt-filtered the limits are slightly narrower at [0.0084, 0.0125] and for the 100pt-filtering the limits are again slightly narrower.

So what does that all mean?

  • for the raw data, the simple trend line explains almost none of the variance of the time series (only 8%).
  • for the 100-pt filtering, the trend line explains almost all of the data (97%).
  • nonetheless, the trend lines are almost identical as are the confidence levels.

The time series are, of course, very closely related: the same except for the filtering. This shows that a low r2 value should not be interpreted as evidence of lack of trend.

[edit] Source code

Source id in IDL. pp_regress and reg_explain not given.

n=1000

data=10*randomn(seed,n)+indgen(n)/100.
y=indgen(n)
y1=y(indgen(n/10)*10+5)
y2=y(indgen(n/100)*100+5*10)

ret=pp_regress(y,data)
print,reg_explain(ret)

data1=reform(data,10,n/10)
data1=avg(data1,0)

ret1=pp_regress(y1,data1)
print,reg_explain(ret1)

data2=reform(data,100,n/100)
data2=avg(data2,0)

ret2=pp_regress(y2,data2)
print,reg_explain(ret2)

plot,y,data,yr=[-20,30]
pp_regress_plot,ret,th=3

oplot,y1,data1,col=2,th=3
oplot,y2,data2,col=3,th=3
date/time username edit summary
21:25, 20 December 2004 en:User:Quadell (tagged)
22:13, 14 August 2004 en:User:Danakil (fmt)
21:17, 14 August 2004 en:User:William M. Connolley (Add code.)
14:05, 12 August 2004 en:User:William M. Connolley (I bumped up the SD to make the point obvious.)
14:00, 12 August 2004 en:User:William M. Connolley (Comments)
13:50, 12 August 2004 en:User:William M. Connolley (...partial before reload)
13:32, 12 August 2004 en:User:William M. Connolley (Image of random data plus trend, with best-fit line and different smoothings)

[edit] Historio de la dosiero

Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version.

Click on date to download the file or see the image uploaded on that date.

The following pages on the English Wikipedia link to this file (pages on other projects are not listed):