Quasi-invariant measure

From Wikipedia, the free encyclopedia

In mathematics, a quasi-invariant measure μ with respect to a transformation T, from a measure space X to itself, is a measure which, roughly speaking, is multiplied by a numerical function by T. An important class of examples occurs when X is a smooth manifold M, T is a diffeomorphism of M, and μ is any measure that locally is a measure with base the Lebesgue measure on Euclidean space. Then the effect of T on μ is locally expressible as multiplication by the Jacobian determinant of the derivative (pushforward) of T.

To express this idea more formally in measure theory terms, the idea is that the Radon-Nikodym derivative of the transformed measure μ′ with respect to μ should exist everywhere; or that the two measures should be equivalent (i.e. mutually absolutely continuous):

\mu' = T_{*} (\mu) \approx \mu.

That means, in other words, that T preserves the concept of a set of measure zero. Considering the whole equivalence class of measures ν, equivalent to μ, it is also the same to say that T preserves the class as a whole, mapping any such measure to another such. Therefore the concept of quasi-invariant measure is the same as invariant measure class.

In general, the 'freedom' of moving within a measure class by multiplication gives rise to cocycles., when transformations are composed.

As an example, Gaussian measure on Euclidean space \mathbb{R}^{n} is not invariant under translation (like Lebesgue measure is), but is quasi-invariant under all translations.

It can be shown that if E is a separable Banach space and μ is a locally finite Borel measure on E that is quasi-invariant under all translations by elements of E, then either \dim E < + \infty or μ is the trivial measure \mu \equiv 0.