Quantum phase transition

From Wikipedia, the free encyclopedia

In physics, a quantum phase transition (QPT) is a phase transition between different quantum phases (phases of matter at zero temperature). Contrary to classical phase transitions, quantum phase transitions can be only be accessed by varying a physical parameter - such as magnetic field or pressure - at absolute zero temperature. The transition describes an abrupt change in the ground state of a many-body system due to its quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous.

To understand quantum phase transitions, it is useful to contrast them to classical phase transitions (CPT) (also called thermal phase transitions). A CPT describes a discontinuity in the thermodynamic properties of a system. It signals a reorganization of the particles; A typical example is the freezing transition of water describing the transition between liquid and ice. The classical phase transitions are driven by a competition between the energy of a system and the entropy of its thermal fluctuations. A classical system does not have entropy at zero temperature and therefore no phase transition can occur.

In contrast, even at zero temperature a quantum-mechanical system has quantum fluctuations and therefore can still support phase transitions. As a physical parameter is varied, quantum fluctuations can drive a phase transition into a different phase of matter. A canonical quantum phase transition is the well-studied superconductor/insulator transition in disordered thin films which separates two quantum phases having different symmetries. Quantum magnets provide another example of QPT.

In other languages