Quantale

From Wikipedia, the free encyclopedia

In mathematics, quantales are certain partially ordered algebraic structures that generalize locales (point free topologies) as well as various lattices of multiplicative ideals from ring theory and functional analysis (C*-algebras, von Neumann algebras). Quantales are sometimes referred to as complete residuated semigroups.

A quantale is a complete lattice Q with an associative binary operation ∗ : Q × QQ, called its multiplication, satisfying

x ∗ sup { xi | i in I } = sup { xxi | i in I }
sup { xi | i in I } ∗ x = sup { xix | i in I }

for all x, xi in Q, i in I (here I is any index set).

The quantale is unital if it is has an identity element e for its multiplication:

xe = x = ex

for all x in Q. In this case, the quantale is naturally a monoid with respect to its multiplication ∗. If the unit is the top element of the underlying lattice, the quantale is said to be strictly two-sided (or simply integral).

A commutative quantale is a quantale whose multiplication is commutative. A frame, with its multiplication given by the meet operation, is a typical example of a strictly two-sided commutative quantale. Another simple example is provided by the unit interval together with its usual multiplication.

An idempotent quantale is a quantale whose multiplication is idempotent. A frame is the same as an idempotent strictly two-sided quantale.

[edit] References

  • C.J. Mulvey, "Quantales" SpringerLink Encyclopaedia of Mathematics (2001)
  • J. Paseka, J. Rosicky, Quantales, in: B. Coecke, D. Moore, A. Wilce, (Eds.), Current Research in Operational Quantum Logic: Algebras, Categories and Languages, Fund. Theories Phys., vol. 111, Kluwer Academic Publishers, 2000, pp. 245–262.
  • K. Rosenthal, Quantales and Their Applications, Pitman Research Notes in Mathematics Series 234, Longman Scientific & Technical, 1990.