Quantal response equilibria

From Wikipedia, the free encyclopedia

Quantal response equilibria (QRE) are a game-theoretical formulation. First introduced by Richard McKelvey and Thomas Palfrey in two papers (Quantal Response Equilibria for Normal Form Games and Quantal Response Equilibria for Extensive Form Games), it provides an alternative to Nash equilibria. QREs do not require perfect rationality—instead, players are assumed to make normally distributed errors in their predicted payoff for any mixed equilibria. As the variance on these errors approaches zero, QRE predicts a unique equilibrium that is a Nash equilibrium.

[edit] References

  • McKelvey, Richard and Palfrey, Thomas (1998) Quantal Response Equilibria for Normal Form Games Games and Economic Behavior
  • McKelvey, Richard and Palfrey, Thomas (1998) Quantal Response Equilibria for Extensive Form Games Experimental Economics


 view  Topics in game theory

Definitions

Normal form game · Extensive form game · Cooperative game · Information set · Preference

Equilibrium concepts

Nash equilibrium · Subgame perfection · Bayes-Nash · Trembling hand · Proper equilibrium · Epsilon-equilibrium · Correlated equilibrium · Sequential equilibrium · Quasi-perfect equilibrium · ESS · Risk dominance

Strategies

Dominant strategies · Mixed strategy · Tit for tat · Grim trigger

Classes of games

Symmetric game · Perfect information · Dynamic game · Repeated game · Signaling game · Cheap talk · Zero-sum game · Mechanism design · Stochastic game

Games

Prisoner's dilemma · Coordination game · Chicken · Battle of the sexes · Stag hunt · Matching pennies · Ultimatum game · Minority game · Rock, Paper, Scissors · Pirate game · Dictator game · Public goods game · Nash bargaining game

Theorems

Minimax theorem · Purification theorems · Folk theorem · Revelation principle · Arrow's Theorem

Related topics

Mathematics · Economics · Behavioral economics · Evolutionary game theory · Population genetics · Behavioral ecology · Adaptive dynamics · List of game theorists