Quadratic Gauss sum

From Wikipedia, the free encyclopedia

For the general type of Gauss sums see Gaussian period, Gauss sum

In mathematics, quadratic Gauss sums are certain sums over exponential functions with quadratic argument. They are named after Carl Friedrich Gauss, who studied them extensively.

Contents

[edit] Definition

Gauss' sum G(n,m) is defined by

G(n,m)=\sum_{x=1}^m e(nx^2/m),

where e(x) is the exponential function exp(2πix).

[edit] Evaluation of Gauss sums

For any natural numbers n and m, G(n,m) can be evaluated using the following three results:

  • Gauss sums are multiplicative, i.e. given natural numbers n, m and M with gcd(m,M) =1 one has
G(n,mM)=G(nM,m)G(nm,M).
  • If m is odd, then
G(n,m)=\begin{cases}\left(\frac{n}{m}\right)\sqrt{m} & \mbox{ if }m\equiv 1\mod(4) \\ i\left(\frac{n}{m}\right)\sqrt{m} & \mbox{ if }m\equiv 3\mod(4)\end{cases}

where the fraction in parentheses is the Jacobi symbol.

  • If m is a power of 2, then
G(n,2^l)=\begin{cases}0 & \mbox{ if }l=1 \\ \left(1+i^n\right)2^{l/2} & \mbox{ if }l\mbox{ is even} \\ 2^\frac{l+1}{2}e^{\frac{\pi i}{4}n} & \mbox{ if }l>1\mbox{ and } l\mbox{ is odd}\end{cases}


Another useful formula is

G(n,pk)=pG(n,pk-2)

if k≥2 and p is an odd prime number or if k≥4 and p=2.

[edit] See also

[edit] References

  • Ireland and Rosen (1990). A Classical Introduction to Modern Number Theory. Springer-Verlag. ISBN 0-387-97329-X.