Talk:Q factor
From Wikipedia, the free encyclopedia
[edit] FWHM vs 3dB
The article states:
- the bandwidth is defined as the 3 dB change in level besides the center frequency.
- The definition of the bandwidth BW as the "full width at half maximum" or FWHM is wrong.
Unless the definition depends on the slight difference between -3dB (1/1.995) and half maximum (1/2), this would seem to be the same thing. Anyone know for sure, here? -- DrBob 17:57, 27 Sep 2004 (UTC)
- Strictly, the FWHM is full width at half-max, that is half power. In dB this is -3.01 dB, close enough to 3 dB down to not worry about it.
- The definition "In optics..." appears strange to me. In mechanics the Q factor can be shown to be equal to 2 * Pi times the energy stored in the oscillator divided by the energy dissipated per cycle. I suspect this is the correct definition, applicable to optics, mechanics, and any other oscillating system.
- 24.245.15.183
-
- I suspect you're absolutely correct about the definition applying to all oscillating systems. "Q-switching", though, is a very real phenomenon and used to great advantage in pulsed laser systems.
-
- By the way, you can easily sign your "talk" posts by appending four tildes (~~~~) to the posting. When you "Save changes", this will be replaced by your username in a handy linked form and a timestamp of your edit.
-
- Atlant 14:27, 10 August 2005 (UTC)
Alison Chaiken 00:00, 23 September 2005 (UTC): I've always thought of the quality factor as the number of cycles that it takes for energy to be dissipated from the system. Thus a Q of 1000 means that the excited oscillation will ring down to zero in 1000 cycles. I would think this article should mention this insight. I would add it except that I can remember if Q is the number of cycles to ring down to 1/2 the original energy or what exactly.
-
- No, that's wrong. It never decays to zero. The article states correctly that it's the number of cycles required to decay to 1/535 of its original energy.--24.52.254.62 01:25, 21 October 2006 (UTC)