Placement (EDA)

From Wikipedia, the free encyclopedia

Look up Placement in Wiktionary, the free dictionary.

Placement is an essential step in electronic design automation - the portion of the physical design flow that assigns exact locations for various circuit components within the chip’s core area. An inferior placement assignment will not only affect the chip's performance but might also make it nonmanufacturable by producing excessive wirelength, which is beyond available routing resources. Consequently, a placer must perform the assignment while optimizing a number of objectives to ensure that a circuit meets its performance demands. Typical placement objectives include

  • Total wirelength: Minimizing the total wirelength, or the sum of the length of all the wires in the design, is the primary objective of most existing placers. This not only helps minimize chip size, and hence cost, but also minimizes power and delay, which are proportional to the wirelength and wirelength squared, respectively.
  • Timing: The clock cycle of a chip is determined by the delay of its longest path, usually referred to as the critical path. Given a performance specification, a placer must ensure that no path exists with delay exceeding the maximum specified delay.
  • Congestion: While it is necessary to minimize the total wirelength to meet the total routing resources, it is also necessary to meet the routing resources within various local regions of the chip’s core area. A congested region might lead to excessive routing detours.
  • Power: Power minimization typically involves distributing the locations of cell components so as to reduce the overall power consumption, alleviate hot spots, and smooth temperature gradients.
  • A secondary objective is placement runtime minimization.

Contents

[edit] Placement within the EDA design flow

A placer takes a given synthesized circuit netlist together with a technology library and produces a valid placement layout. The layout is optimized according to the aforementioned objectives and ready for cell resizing and buffering — a step essential for timing and signal integrity satisfaction. Clock-tree synthesis and routing follow, completing the physical design process. In many cases, parts of, or the entire, physical design flow are iterated a number of times until design closure is achieved.

In the case of application-specific integrated circuits, or ASICs, the chip’s core layout area is comprised of a number of fixed height rows, with either some or no space between them. Each row consists of a number of sites which can be occupied by the circuit components. A free site is a site that is not occupied by any component. Circuit components are either standard cells, macro blocks, or I/O pads. Standard cells have a fixed height equal to a row’s height, but have variable widths. The width of a cell is an integral number of sites. On the other hand, blocks are typically larger than cells and have variable heights that can stretch a multiple number of rows. Some blocks can have preassigned locations — say from a previous floorplanning process — which limit the placer’s task to assigning locations for just the cells. In this case, the blocks are typically referred to by fixed blocks. Alternatively, some or all of the blocks may not have preassigned locations. In this case, they have to be placed with the cells in what is commonly referred to as mixed-mode placement.

In addition to ASICs, placement retains its prime importance in gate array structures such as field-programmable gate arrays (FPGAs). In FPGAs, placement maps the circuit’s subcircuits into programmable FPGA logic blocks in a manner that guarantees the completion of the subsequent stage of routing.

[edit] Basic techniques

  • Analytical techniques approximate the wirelength objective using quadratic or nonlinear formulations.
  • The advent of min-cut partitioners paved the way to the introduction of min-cut placers.
  • Another thread of placement techniques started with the proposal of simulated annealing as a general combinatorial optimization technique.

[edit] See also

In addition, there are hundreds of articles on various technical details of this subject (Placement (EDA)). These are normally presented at conferences such as the Design Automation Conference (DAC) and the International Conference on Computer-Aided Design (ICCAD), along with many smaller conferences. The main journal in the field is IEEE Transactions on Computer-Aided Design. Most of these journals and conference proceedings are published by the IEEE or the ACM. You can search the IEEE on-line library and the ACM digital library and view the abstracts for free. Downloading full text requires purchase, society membership, or a site license; many schools and companies have such licenses already.

[edit] References

  • Electronic Design Automation For Integrated Circuits Handbook, by Lavagno, Martin, and Scheffer, ISBN 0-8493-3096-3 A survey of the field of Electronic Design Automation. The above summary was derived, with permission, from Volume II, Chapter 5, Digital Layout -- Placement by Andrew Kahng and Sherief Reda.