Picard-Fuchs equation
From Wikipedia, the free encyclopedia
In mathematics, the Picard-Fuchs equation is a linear ordinary differential equation whose solutions describe the periods of elliptic curves.
Contents |
[edit] Definition
Let
be the j-invariant with g2 and g3 the modular invariants of the elliptic curve in Weierstrass form:
Note that the j-invariant is an isomorphism from the Riemann sphere to the Riemann surface H/Γ where H is the upper half-plane and Γ is the modular group. The Picard-Fuchs equation is then
Written in Q-form, one has
[edit] Solutions
This equation can be cast into the form of the hypergeometric differential equation. It has two linearly independent solutions, called the periods of elliptic functions. The ratio of the two periods is equal to the period ratio τ, the standard coordinate on the upper-half plane. However, the ratio of two solutions of the hypergeometric equation is also known as a Schwarz triangle map.
The Picard-Fuchs equation can be cast into the form of Riemann's differential equation, and thus solutions can be directly read off in terms of Riemann P-functions. One has
and so
- τ(j) = s(unfinished, article in development).
[edit] Identities
This solution satisfies the differential equation
where (Sf)(x) is the Schwarzian derivative of f with respect to x.
[edit] Generalization
In algebraic geometry this equation has been shown to be a very special case of a general phenomenon, the Gauss-Manin connection.
[edit] References
- J. Harnad and J. McKay, Modular solutions to equations of generalized Halphen type, Proc. R. Soc. London A 456 (2000), 261-294,
- (Provides a readable introduction, some history, references, and various interesting identities and relations between solutions)
- J. Harnad, Picard-Fuchs Equations, Hauptmoduls and Integrable Systems, Chapter 8 (Pgs. 137-152) of Integrability: The Seiberg-Witten and Witham Equation (Eds. H.W. Braden and I.M. Krichever, Gordon and Breach, Amsterdam (2000)).
- (Provides further examples of Picard-Fuchs equations satisfied by modular functions of genus 0, including non-triangular ones, and introduces Inhomogeneous Picard-Fuchs equations as special solutions to isomonodromic deformation equations of Painlevé type.)