Pentagonal gyrobicupola

From Wikipedia, the free encyclopedia

Pentagonal gyrobicupola
Pentagonal gyrobicupola
Type Johnson
J30 - J31 - J32
Faces 10 triangles
10 squares
2 pentagons
Edges 40
Vertices 20
Vertex configuration 10 of 3.4.5.4
10 of 3.4.3.4
Symmetry group D5h
Dual -
Properties convex

In geometry, the pentagonal gyrobicupola is one of the Johnson solids (J31). Like the pentagonal orthobicupola (J30), it can be obtained by joining two pentagonal cupolae (J5) along their bases. The difference is that in this solid, the two halves are rotated 36 degrees with respect to one another.

The pentagonal gyrobicupola is the third in an infinite set of gyrobicupolae.

The pentagonal gyrobicupola is what you get when you take a rhombicosidodecahedron, chop out the middle parabidiminished rhombicosidodecahedron (J80), and paste the two opposing cupolae back together.

The 92 Johnson solids were named and described by Norman Johnson in 1966.

[edit] External link


This polyhedron-related article is a stub. You can help Wikipedia by expanding it.
In other languages