Pauli equation

From Wikipedia, the free encyclopedia

Quantum physics
Quantum mechanics

Introduction to...
Mathematical formulation of...

Fundamental concepts

Decoherence · Interference
Uncertainty · Exclusion
Transformation theory
Ehrenfest theorem · Measurement

Experiments

Double-slit experiment
Davisson-Germer experiment
Stern–Gerlach experiment
EPR paradox · Popper's experiment Schrödinger's cat

Equations

Schrödinger equation
Pauli equation
Klein-Gordon equation
Dirac equation

Advanced theories

Quantum field theory
Quantum electrodynamics
Quantum chromodynamics
Quantum gravity
Feynman diagram

Interpretations

Copenhagen · Quantum logic
Hidden variables · Transactional
Many-worlds · Ensemble
Consistent histories · Relational
Consciousness causes collapse
Orchestrated objective reduction

Scientists

Planck · Schrödinger
Heisenberg · Bohr · Pauli
Dirac · Bohm · Born
de Broglie · von Neumann
Einstein · Feynman
Everett · Others

This box: view  talk  edit

The Pauli equation is a Schrödinger equation which describes the time evolution of spin 1/2 particles (eg. electrons). It is the non-relativistic border case of the Dirac equation and can be used where particles are slow enough that relativistic effects can be neglected.

The Pauli equation was formulated by Wolfgang Pauli.

Contents

[edit] Details

The time dependent linear Pauli equation :

(\vec{\sigma}\cdot \vec{p} - c)|\psi\rangle=0
where
\vec{p}is the momentum
c is the speed of light
\vec{\sigma} are the Pauli matrices
|\psi\rangle := \begin{pmatrix} |\psi_+\rangle \\                                        |\psi_-\rangle \end{pmatrix} is the Pauli-Spinor

Both spinor components satisfy the Schrödinger-Equation. This means that the system is as to the additional degree of freedom, degenerated.

With an external electromagnetic field the full Pauli equation reads:


\underbrace{i \hbar \partial_t \vec \varphi_\pm = \left( \frac{(\underline{\vec p}-q \cdot \vec A)^2}{2 m} + q \phi \right) \hat 1 \vec \varphi_\pm}_{\rm{Schr}\ddot o\rm{dingerequation}} - \underbrace{\frac{q \hbar}{2m}\vec{\hat \sigma} \cdot \vec B \vec \varphi_\pm}_{\rm Stern Gerlach  term}.

where

φ is the skalar electric potenial
A das Vector potential
\vec \varphi_\pm bzw. in Dirac-Notation |\psi\rangle :=\begin{pmatrix} |\varphi_+\rangle \\ |\varphi_-\rangle  \end{pmatrix} are the Pauli-Spinors
\vec{\hat \sigma} are the Pauli matrices
\vec B is the external magnetic field
\hat 1 two dimensional Identity matrix

With the Stern Gerlach term it is possible to comprehend the obtaing of spin orientation of atoms with one valence electron e.g. silver atoms which flow through an inhomogenous magntic field.

Analogous the term is resonsible for the energetic disperment in a magnetic field as can be viewed in the anomal Zeeman effect.

[edit] Derivation of the Pauli equation

Starting from the Dirac equation for weak electromagnetic interactions :

i \hbar \partial_t \left( \begin{array}{c} \vec \varphi_1\\\vec \varphi_2\end{array} \right) = c \left( \begin{array}{c} \vec{\hat \sigma} \vec \pi \vec \varphi_2\\\vec{\hat \sigma} \vec \pi \vec \varphi_1\end{array} \right)+q \phi \left( \begin{array}{c} \vec \varphi_1\\\vec \varphi_2\end{array} \right) + mc^2 \left( \begin{array}{c} \vec \varphi_1 \\-\vec \varphi_2\end{array} \right)

with \vec \pi = \vec p - q \vec A

using the following approximatations :

  • Simplification of the equation through following ansatz
\left( \begin{array}{c} \vec \varphi_1 \\ \vec \varphi_2 \end{array}  \right) = e^{-i \frac{mc^2t}{\hbar}} \left( \begin{array}{c} \vec{\tilde \varphi_1} \\ \vec{\tilde \varphi_2} \end{array} \right)
  • Eliminating the rest energy through an Ansatz with slow time dependence
\partial_t \vec \varphi_i \ll \frac{mc^2}{\hbar} \vec \varphi_i
  • weak coupling of the electric potential
q \phi \ll mc^2

[edit] Examples

[edit] References

[edit] External links

In other languages