User talk:P.wormer

From Wikipedia, the free encyclopedia

Welcome!

Hello, P.wormer, and welcome to Wikipedia! Thank you for your contributions. I hope you like the place and decide to stay. Here are some pages that you might find helpful:

I hope you enjoy editing here and being a Wikipedian! Please sign your name on talk pages using four tildes (~~~~); this will automatically produce your name and the date. If you need help, check out Wikipedia:Questions, ask me on my talk page, or place {{helpme}} on your talk page and someone will show up shortly to answer your questions. Again, welcome!  Hu 11:25, 2 November 2006 (UTC)

Contents

[edit] Creating stubs

Stubs are good, but please create them with basic formatting (bolding of the title in the first sentence), and with a good category or stub tag or two. Also, please place text for each paragraph on a single line with out explicit line breaks, though this is only a courtesy, not critical. See the changes I made on Wigner D-matrix. Hu 11:26, 2 November 2006 (UTC)

[edit] Rigid rotor

What my original concern was was that you might have been relying on contents of the quantum mechanics article to write your new contribution, but that was probably just a poor choice of words.

The only thing that I have really checked is that you have included sources. Provided that you actually have seen copies of the documents you quote and, together, they account for the whole contents of your additions, that should be OK. However, they look like they may be the original research papers. It's better to use a subsequent text book, because:

  • information in text books is usually generally accepted material, whereas an original research paper may actually be rejected by most of the research community;
  • text books may be easier for other people to access, to check that the article really does match its sources.

-- David Woolley 23:23, 26 November 2006 (UTC)

[edit] Great orthogonality theorem

Thank you for your contributions. I could never have produced that much information about GOT. I would like to point out that I am unsure how to make the GOT page show up as an option if you search for "GOT". If you figure out how to do this, please let me know.

Cheers, Piercen 15:48, 4 December 2006 (UTC)

Just came by and saw this thread. You can do this: [1] - or, if that page didn't exist, you can create a redirect by typing #REDIRECT [[Great orthogonality theorem]] in the GOT page. More information at Wikipedia:Redirect. --HappyCamper 14:00, 8 December 2006 (UTC)

[edit] Hello!

Regular Wikipedian here - just thought I might drop by and say how wonderful your additions to rigid rotor are! Anyway, I wonder if you have more materials you could add to vibronic coupling? On another tangent, you might be interested to check out Wikipedia:WikiProject Chemistry. There are a few physical and organic chemists there. Feel free to let me know if you have any questions. Cheers, HappyCamper 19:04, 6 December 2006 (UTC)

Thanks for your note on my talk page. A few housekeeping things. I've noticed that no Wikipedian has told you about the goodies yet. Just in case:
  • There is a little plus sign at the top of talk pages which you can use to start a new discussion thread. It automatically creates a new section. The four dashes ---- does not create a new editing section so it's not used often. However, you'll see this used, say, in very long threads. You'll also see this if people are trying to design the visual layout of pages and sections.
  • When you edit, there are a number of blue coloured buttons at the top of the edit window itself. They are shortcuts to introduce Wiki syntax into the text. Very useful if you want to design tables and organize images. Sometimes, people use these to display equations - see Fourier transform for an example.
  • There should be a few tabs at the top of your screen, like "move" and "history" which you might like to experiment with. There is also a "special pages" link to your left, inside a section labeled the toolbox.
Now, about Born-Oppenheimer - we had an article for a while, but we removed it because we couldn't figure out what was the best way to present the material. Check the history of that article, and also the talk page. Feel free to start from scratch, or edit directly from an older copy of the article. To do this, you can click on an older copy, and just choose the one you'd like to edit from. I'll contact User:Martin Hedegaard, but I'm sure it's alright if you just start editing as you see fit. --HappyCamper 13:45, 8 December 2006 (UTC)
On another note, I assume you have a copy of that 1927 paper in the Annalen der Physik that Born and Oppenheimer wrote? It actually surprised me quite a bit that the modern interpretation given in textbooks and such is quite different from how they presented it almost 80 years ago. --HappyCamper 13:53, 8 December 2006 (UTC)
Hi, just regarding the Born-Oppenheimer approximation, if you want just go ahead and edit, I only did the merging of articles because the existing articles on the subject was very bad. If you in any way can improve the material on the subject by splitting the article again then go ahead. Martin Hedegaard 15:43, 8 December 2006 (UTC)
Thanks to the link to the translated BO paper. Very handy. As for the 1982 Mead-Truhlar paper, it was just sitting on my desk! --HappyCamper 02:25, 9 December 2006 (UTC)

[edit] Breaks

Hi Paul, I've noticed that some edits you make to Wikipedia seem to have contain extra line breaks. I haven't seen this before on Wikipedia. May I ask which browser are you using? --HappyCamper 12:07, 13 January 2007 (UTC)

Hi HC, Firefox 1.5.09. You probably know that line breaks don't take space, at most 2 bytes: ascii 10,13. Under Unix one byte: ascii 10. --P.wormer 15:07, 13 January 2007 (UTC)

[edit] Battle of Mookerheyde

Sorry, I don't have a source for that information; that edit was a procedural merge from the Mookerhei article. --Alan Au 17:10, 26 January 2007 (UTC)

[edit] Stark effect diagram

I have responded to your comments regarding the energy level diagram in Stark effect, please see Talk:Stark_effect#Drawing.--DJIndica 01:05, 25 February 2007 (UTC)

Thank you for your attention to this issue, it seems I was careless with the creation of the diagram and only 7 sublevels were included for each n-level. There should be n-1 sublevels -n+2, -n+4,... n-4, n-2. I have uploaded a new version, see my sandbox for a proposed scheme for displaying it in Stark effect. I would appreciate your comments/suggestions.--DJIndica 20:09, 1 March 2007 (UTC)
I have added the new diagram with an updated caption. I am not totally happy with the caption, I may make a new diagram which includes the magnetic quantum number. It may be worth including in the article a discussion of the quantum number describing the Stark states, even though it is slightly confusing to have a quantum number labelled as (n1 - n2) which is derived from a solution to the Schrodinger equation in parabolic coordinates. —The preceding unsigned comment was added by DJIndica (talkcontribs) 22:59, 4 March 2007 (UTC).

[edit] Molecular vibration

Thanks for the link. I had missed this article. It probably needs more links to it. Just one small point: expressing normal coordinates in terms of Cartesian coordinates is of very little value (except perhaps for creating animations!?), particularly as the force-field is usually expressed in terms of internal coordinates.Petergans 07:56, 27 March 2007 (UTC)

  • Hi Petergans, that used to be the case, but not any longer: modern ab initio programs compute the force constant matrix (Hessian of the PES) in terms of mass weighted Cartesians. Diagonalization of this matrix gives the normal coordinates in terms of Cartesians (plus 6 eigenvectors of zero eigenvalue, because in this approach the molecule is neither rotating nor translating). --P.wormer 00:22, 28 March 2007 (UTC)
  • Good point. To follow it up, I searched Wikipedia for "force field" and found nothing relevant to vibrational spectroscopy! There is a gap here which I don't feel qualified to fill, especially in relating Ab Initio results to VFF, UBF etc.Petergans 21:03, 28 March 2007 (UTC)
  • Here I am in in not so sunny Italy, working in the dept. of chemistry in Florence where, incidentally, Califano still makes occasional appearances. I too am retired, for Leeds University (inorganic chemistry), but am still active in the field of stability constant determination.

I thought about our discussions on the flight over here and have come to the conclusion that it would be better to be more rigorous. Omit the issue of coordinates from the introduction altogether and add a sub-section on Cartesian coordinates where the issue of separation of vibration and rotation can be treated properly. This would also be a good place to mention the ab initio calculations, but I need some help on that subject, never having done it myself. Your suggestions will be welcome

Hallo Petergans, you may want to have a look at Molecular Hamiltonian#Harmonic nuclear motion Hamiltonian and GF method#Normal coordinates in terms of Cartesian displacement coordinates. --P.wormer 14:28, 30 March 2007 (UTC) (who is in sunny California)