Orlicz space

From Wikipedia, the free encyclopedia

In mathematics, Orlicz spaces are a generalization of Lp spaces. They are named after the Polish mathematician Władysław Orlicz.

Contents

[edit] Definition

Let X \subseteq \mathbb{R}^{n} be an open set and let \varphi : [0, + \infty) \to [0, + \infty) be an increasing convex function. Then the Orlicz space L^{\varphi} (X) is defined to be the space of all integrable functions u : X \to \mathbb{R} such that the Orlicz norm

\| u \|_{L^{\varphi} (X)} := \inf \left\{ \lambda > 0 \left| \int_{X} \varphi \left( \frac{| u(x) |}{\lambda} \right) \, \mathrm{d} x \leq 1 \right. \right\} < + \infty.

[edit] Properties

[edit] Orlicz-Sobolev spaces

Certain Sobolev spaces are embedded in Orlicz spaces: for X \subseteq \mathbb{R}^{n} open and bounded with Lipschitz boundary \partial X,

W_{0}^{1, p} (X) \subseteq L^{\varphi} (X)

for

\varphi (t) := \exp \left( | t |^{p / (p - 1)} \right) - 1.

More generally, for X \subseteq \mathbb{R}^{n} open and bounded with Lipschitz boundary \partial X, consider the space W_{0}^{k, p} (X), kp = n. There there exists constants C1,C2 > 0 such that

\int_{X} \exp \left( \left( \frac{| u(x) |}{C_{1} \| \mathrm{D}^{k} u \|_{L^{p} (X)}} \right)^{p / (p - 1)} \right) \, \mathrm{d} x \leq C_{2} | X |.

[edit] References

  • Evans, Lawrence C. (1998). Partial differential equations. Providence, RI: American Mathematical Society. ISBN 0-8218-0772-2.