Optimal matching
From Wikipedia, the free encyclopedia
Optimal matching is a sequence analysis method used in social science, to assess the dissimilarity of ordered arrays of tokens that usually represent a time-ordered sequence of socio-economic states two individuals have experienced. Once such distances have been calculated for a set of observations (e.g. individuals in a cohort) classical tools (such as cluster analysis) can be used. The method was tailored to social sciences[1] from a technique originally introduced to study molecular biology (protein or genetic) sequences (see sequence alignment).
Contents |
[edit] Algorithm
Let be a sequence of states si belonging to a finite set of possible states. Let us denote the sequence space, i.e. the set of all possible sequences of states.
Optimal matching algorithms work by defining simple operator algebras that manipulate sequences, i.e. a set of operators . In the most simple approach, a set composed of only three basic operations to transform sequences is used:
- one state s is inserted in the sequence
- one state is deleted from the sequence and
- a state s1 is replaced (substituted) by state s'1, .
Imagine now that a cost is associated to each operator. Given two sequences S1 and S2, the idea is to measure the cost of obtaining S2 from S1 using operators from the algebra. Let be a sequence of operators such that the application of all the operators of this sequence A to the first sequence S1 gives the second sequence S2: where denotes the compound operator. To this set we associate the cost , that represents the total cost of the transformation. One should consider at this point that there might exist different such sequences A that transform S1 into S2; a reasonable choice is to select the cheapest of such sequences. We thus call distance
that is, the cost of the less expensive set of transformations that turn S1 into S2. Notice that d(S1,S2) is by definition nonnegative since it is the sum of positive costs, and trivially d(S1,S2) = 0 if and only if S1 = S2, that is there is no cost. The distance function is symmetric if insertion and deletion costs are equal c(aIns) = c(aDel); the term indel cost usually refers to the common cost of insertion and deletion.
Considering a set composed of only the three basic operations described above, this proximity measure satisfies the triangular inequality. Transitivity however, depends on the definition of the set of elementary operations.
[edit] Criticism
Although widely used in sociology, demography, several critics that have been moved to optimal matching techniques. As was pointed out by several authors (see for example[2]), the main problem in the application of optimal matching concerns the definition of the costs c(ai). However, it has also been remarked that as the counterfactual model of causality has increased in popularity, sociologists have returned to matching as a research methodology.
[edit] References and notes
- ^ A. Abbott and A. Tsay, (2000) Sequence Analysis and Optimal Matching Methods in Sociology: Review and Prospect Sociological Methods & Research], Vol. 29, 3-33. DOI: 10.1177/0049124100029001001
- ^ L. L. Wu. (2000) Some Comments on "Sequence Analysis and Optimal Matching Methods in Sociology: Review and Prospect" Sociological Methods & Research, 29 41-64. DOI: 10.1177/0049124100029001003
[edit] Software
- Abbott's original program is available. The source code and windows binary are available.
- TDA is a powerful program, offering access to some of the latest developments in transition data analysis.