Observed information

From Wikipedia, the free encyclopedia

λIn statistics, the Observed Information is minus the second deriviative of the log-likelihood.

[edit] Definition

Suppose we observe random variables X_1,\ldots,X_n, independent and identically distributed with density f(X; θ), where θ is a (possibly unknown) vector. Then the log-likelihood for the data is

l(\theta | X_1,\ldots,X_n) = \sum_{i=1}^n \log f(X_i, \theta).

We define the Observed Information Matrix at θ * as

\mathcal{J}(\theta^*)    = - \left.      \nabla \nabla^{\top}      l(\theta)   \right|_{\theta=\theta^*}
= - \left. \left( \begin{array}{cccc}   \tfrac{\partial^2}{\partial \theta_1^2}   &  \tfrac{\partial^2}{\partial \theta_1 \partial \theta_2}   &  \cdots   &  \tfrac{\partial^2}{\partial \theta_1 \partial \theta_n} \\   \tfrac{\partial^2}{\partial \theta_2 \partial \theta_1}   &  \tfrac{\partial^2}{\partial \theta_2^2}   &  \cdots   &  \tfrac{\partial^2}{\partial \theta_2 \partial \theta_n} \\   \vdots &   \vdots &   \ddots &   \vdots \\   \tfrac{\partial^2}{\partial \theta_n \partial \theta_1}   &  \tfrac{\partial^2}{\partial \theta_n \partial \theta_2}   &  \cdots   &  \tfrac{\partial^2}{\partial \theta_n^2} \\ \end{array} \right)  l(\theta) \right|_{\theta = \theta^*}

[edit] Fisher Information

If \mathcal{I}(\theta) is the Fisher Information, then

\mathcal{I}(\theta) = \mathrm{E}(\mathcal{J}(\theta)).