Multivariate probit

From Wikipedia, the free encyclopedia

Extension of the probit model to estimate several binary variables jointly.

[edit] Example: bivariate probit

Y1 and Y2 are two binary dependent variables. \left\{ \begin{array}{ll} Y_1&=1_{(Y^*_1>0)}\\ Y_2&=1_{(Y^*_2>0)} \end{array} \right.

with

\left\{ \begin{array}{ll} Y_1^*&=X\beta_1+\varepsilon_1\\ Y_2^*&=X\beta_2+\varepsilon_2 \end{array} \right.

And:

\left( \begin{array}{c} \varepsilon_1\\ \varepsilon_2 \end{array} \right)|X \sim \mathcal{N} \left(\left( \begin{array}{c} 0\\ 0 \end{array} \right) , \left( \begin{array}{cc} 1&\rho\\ \rho&1 \end{array} \right)\right)

The bivariate probit model estimates the values of \beta_1,\ \beta_2,\ \rho.