Motor learning
From Wikipedia, the free encyclopedia
Motor learning is the process of improving the smoothness and accuracy of movements. It is obviously necessary for complicated movements such as speaking, playing the piano and climbing trees, but it is also important for calibrating simple movements like reflexes, as parameters of the body and environment change over time. The cerebellum and basal ganglia are critical for motor learning.
As a result of the universal need for properly calibrated movement, it is not surprising that the cerebellum and basal ganglia are widely conserved across vertebrates from fish to humans.
Although motor learning is capable of achieving very skilled behavior, much has been learned from studies of simple behaviors. These behaviors include eyeblink conditioning, motor learning in the vestibulo-ocular reflex, and birdsong. Research on Aplysia californica, the sea slug, has yielded detailed knowledge of the cellular mechanisms of a simple form of learning.
An interesting type of motor learning occurs during operation of a brain-computer interface. For example, Mikhail Lebedev, Miguel Nicolelis and their colleagues recently demonstrated cortical plasticity that resulted in incorporation of an external actuator controlled through a brain-machine interface into the subject's neural representation.
[edit] See also
- Brain-computer interface
- Cephalocaudal and proximodistal trends
- Section about motor learning and control in the Wikibook "Stuttering"
- Cognitive science
- Motor skill
- Procedural memory
- Sequence learning
[edit] References
- Lebedev, M.A., Carmena, J.M., O’Doherty, J.E., Zacksenhouse, M., Henriquez, C.S., Principe, J.C., Nicolelis, M.A.L. (2005) Cortical ensemble adaptation to represent actuators controlled by a brain machine interface. Journal of Neuroscience, 25: 4681-4693.
- Mattar A. A. G. and Ostry D. J. (2007). Neural averaging in motor learning. Journal of Neurophysiology. 97: 220-228.
- Shadmehr, R. and Wise, S.P. (2005) The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning, MIT Press xviii + 575 pp.