MISTRAM
From Wikipedia, the free encyclopedia
MISTRAM (MISsile TRAjectory Measurement) is a high-resolution tracking system used by the United States Air Force (and later NASA) to provide highly detailed trajectory analysis of rocket launches.
A "classic" ranging system used since the 1960s uses radar to time a radio signal's travel to a target (in this case, the rocket) and back. This technique is accurate to approximately 1%. The accuracy of this technique is limited by the need to create a sharp "pulse" of radio so that the start of the signal can be accurately defined. There are both practical and theoretical limits to the sharpness of the pulse. In addition, the timing of the signals often introduced inaccuracies of its own until the introduction of high precision clocks.
In MISTRAM, this was avoided by broadcasting a continuous signal. The basic system used a ground station located down range from the launch site (at Valkaria, Florida and Eleuthera Island, Bahamas) and a transponder on the vehicle. The tracking station transmitted a carrier signal which the transponder responded to by re-broadcasting it on another (shifted) frequency. By slowly changing the frequency of the carrier broadcast from the station and comparing this with the phase of the signal being returned, ground control could measure the distance to the vehicle very accurately. Even with the analog circuitry used, MISTRAM was accurate to less than 1km at the distance of the moon.