Minkowski inequality

From Wikipedia, the free encyclopedia

In mathematical analysis, the Minkowski inequality establishes that the Lp spaces are normed vector spaces. Let S be a measure space, let 1 ≤ p ≤ ∞ and let f and g be elements of Lp(S). Then f + g is in Lp(S), and we have

\|f+g\|_p \le \|f\|_p + \|g\|_p

with equality for 1<p<∞ only if f and g are linearly dependent.

The Minkowski inequality is the triangle inequality in Lp(S).

Like Hölder's inequality, the Minkowski inequality can be specialized to sequences and vectors by using the counting measure:

\left( \sum_{k=1}^n |x_k + y_k|^p \right)^{1/p} \le \left( \sum_{k=1}^n |x_k|^p \right)^{1/p} + \left( \sum_{k=1}^n |y_k|^p \right)^{1/p}

for all real (or complex) numbers x1, ..., xn, y1, ..., yn and where n is the cardinality of S.

[edit] Proof

Choose q so that 1/p + 1/q =1. Then

\int |f+g|^p d\mu
\le\int |f+g|^{p-1}|f| d\mu+\int |f+g|^{p-1}|g| d\mu (because |f+g| ≤ |f|+|g|)
\le\left(\int |f+g|^{(p-1)q} d\mu\right)^{1/q}\left(\int |f|^p d\mu\right)^{1/p} + \left(\int |f+g|^{(p-1)q} d\mu\right)^{1/q}\left(\int |g|^p d\mu\right)^{1/p} (by Hölder's inequality).

Since (p-1)q = p and 1/q = 1-1/p, we obtain Minkowski's inequality by multiplying both sides by ∫(|f+g|pdμ)(1/p)−1.

[edit] References

  • G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities , Cambridge Univ. Press (1934) ISBN 0-521-35880-9
  • H. Minkowski, Geometrie der Zahlen , Chelsea, reprint (1953)
  • M.I. Voitsekhovskii, "Minkowski inequality" SpringerLink Encyclopaedia of Mathematics (2001)