Mechatronics

From Wikipedia, the free encyclopedia

Mechatronics is the synergistic combination of mechanical engineering ("mecha" for mechanisms, i.e., machines that 'move'), electronic engineering ("tronics" for electronics), and software engineering. The purpose of this interdisciplinary engineering field is the study of automata from an engineering perspective and serves the purposes of controlling advanced hybrid systems.

Contents

[edit] Description

A typical mechatronics Venn diagram, Mechatronics is the synergistic combination of several engineering disciplines.
A typical mechatronics Venn diagram, Mechatronics is the synergistic combination of several engineering disciplines.

Mechatronics is centred on mechanics, electronics and computing which, combined, make possible the generation of simpler, more economical, reliable and versatile systems. The portmanteau "mechatronics" was first coined by Mr. Tetsuro Mori, a senior engineer of the Japanese company Yaskawa, in 1969. Mechatronics may alternatively be referred to as "electromechanical systems" or less often as "control and automation engineering".

Engineering cybernetics deals with the question of control engineering of mechatronic systems. It is used to control or regulate such a system; see control theory. Through collaboration the mechatronic modules perform the production goals and inherit flexible and agile manufacturing properties in the production scheme. Modern production equipment consists of mechatronic modules that are integrated according to a control architecture. The most known architectures involve hierarchy, polyarchy, heterarchy and hybrid. The methods for achieving a technical effect are described by control algorithms, which may or may not utilize formal methods in their design. Hybrid-systems important to Mechatronics include production systems, synergy-drives, planetary-rovers, automotive subsystems such as anti-lock braking systems, spin-assist and every day equipment such as autofocus cameras, video, hard disks, CD-players, washing machines, etc.

A typical mechatronic engineering degree would involve classes in engineering mathematics, mechanics, machine component design, mechanical design, thermodynamics, circuits and systems, electronics and communications, control theory, digital signal processing, power engineering, robotics and usually a final year thesis.

[edit] Variant of this field

An emerging variant of this field is biomechatronics, whose purpose is to integrate machine and man, usually in the form of removable gadgets such as exoskeleton. This is the “real-life” version of cyberware.

[edit] See also

[edit] References

  • Mechatronics Principles Concepts and Applications by Tata McGraw-Hill
  • Bradley, Dawson et al, Mechatronics, Electronics in products and processes, Chapman and Hall Verlag, London, 1991.
  • Karnopp, Dean C., Donald L. Margolis, Ronald C. Rosenberg, System Dynamics: Modeling and Simulation of Mechatronic Systems, 4th Edition, Wiley, 2006. ISBN 0-471-70965-4 Bestselling system dynamics book using bond graph approach.

[edit] External links

 v  d  e Major fields of technology
Applied Science Artificial intelligenceCeramic engineeringComputing technologyElectronicsEnergyEnergy storageEngineering physicsEnvironmental technologyMaterials scienceMaterials engineeringMicrotechnologyNanotechnologyNuclear technologyOptical engineeringQuantum computing
Sports and recreation Camping equipmentPlaygroundSportSports equipment
Information and communication CommunicationGraphicsMusic technologySpeech recognitionVisual technology
Industry ConstructionFinancial engineeringManufacturingMachineryMining
Military BombsGuns and ammunitionMilitary technology and equipmentNaval engineering
Domestic Domestic appliancesDomestic technologyEducational technologyFood technology
Engineering Aerospace engineeringAgricultural engineeringArchitectural engineeringBioengineeringBiochemical engineeringBiomedical engineeringChemical engineeringCivil engineeringComputer engineeringConstruction engineeringElectrical engineeringElectronics engineeringEnvironmental engineeringIndustrial engineeringMaterials engineeringMechanical engineeringMechatronics engineeringMetallurgical engineeringMining engineeringNuclear engineeringPetroleum engineeringSoftware engineeringStructural engineeringTissue engineering
Health and Safety Biomedical engineeringBioinformaticsBiotechnologyCheminformaticsFire protection technologyHealth technologiesPharmaceuticalsSafety engineeringSanitary engineering
Transport AerospaceAerospace engineeringMarine engineeringMotor vehiclesSpace technologyTransport