Mahler measure

From Wikipedia, the free encyclopedia

In mathematics, the Mahler measure M(p) of a polynomial p is

M(p)=\lim_{\alpha \rightarrow \infty} ||p||_{\alpha} = \exp\left( \frac{1}{2\pi} \int_{0}^{2\pi} \ln(|p(e^{i\theta})|)\, d\theta \right).

Here p is assumed complex-valued and

||p||_{\alpha}\,

is the lα norm of p.

It can be shown that if

p(z) = a(z-\alpha_1)(z-\alpha_2)\cdots(z-\alpha_n)

then

M(p) = |a| \prod_{|\alpha_i| \ge 1} |\alpha_i|.

The measure is named after Kurt Mahler.

[edit] Properties

  • The Mahler measure is multiplicative, i.e. M(pq) = M(p)M(q).
  • If p is an irreducible polynomial with p(0) \ne 0 and M(p) = 1, then p is a cyclotomic polynomial.

[edit] References

  • Jensen, J. L. "Sur un nouvel et important théorème de la théorie des fonctions." Acta Mathematica 22, 359–364, 1899.
  • Mossinghoff, M. J. "Polynomials with Small Mahler Measure." Mathematics of Computation 67, 1697–1705 and S11–S14, 1998.

[edit] External links