Lyme disease microbiology
From Wikipedia, the free encyclopedia
Lyme disease is caused by spirochetal bacteria from the genus Borrelia, which has well over three hundred known genomic strains. The Borrelia species known to cause Lyme disease are collectively known as Borrelia burgdorferi sensu lato, and have been found to have greater strain diversity than previously estimated.[1]
Borrelia is a gram negative bacterium. Chemical analysis of the external membrane of B. burgdorferi revealed the presence of 46% proteins, 51% lipids and 3% carbohydrates. [2]
Contents |
[edit] Strains
Until recently it was thought that only three genospecies caused Lyme disease: B. burgdorferi sensu stricto (predominant in North America, but also in Europe), B. afzelii, and B. garinii (both predominant in Eurasia).
Newly discovered genospecies have also been found to cause disease in humans: B. lusitaniae[3] in Europe (especially Portugal), North Africa and Asia, B. bissettii[4][5] in the U.S. and Europe, and B. spielmanii[6][7] in Europe.
B. valaisiana was detected by PCR in human spinal fluid in Greece,[8] and is present in Eurasia, especially England, Switzerland and the Netherlands.
At present, diagnostic tests are based only on B. burgdorferi sensu stricto (the only species used in the U.S.), B. afzelii and B. garinii.
Apart from this group of closely related genospecies, additional Borrelia species of interest include B. lonestari, a spirochete recently detected in the Amblyomma americanum tick (Lone Star tick) in the U.S.[9] B. lonestari is suspected of causing STARI (Southern Tick-Associated Rash Illness), also known as Masters disease in honor of its discoverer. The illness follows a Lone Star tick bite and clinically resembles Lyme disease, but sufferers usually test negative for Lyme.[10]There is currently no diagnostic test available for STARI/Masters, and no official treatment protocol, though antibiotics are generally prescribed.
Additional B. burgdorferi sensu lato genospecies suspected of causing illness, but not confirmed by culture, include B. japonica, B. tanukii and B. turdae (Japan); B. sinica (China); and B. andersonii (U.S.). Some of these species are carried by ticks not currently recognized as carriers of Lyme disease.
The B. miyamotoi spirochete, related to the relapsing fever group of spirochetes, is also suspected of causing illness in Japan. Spirochetes similar to B. miyamotoi have recently been found in both I. ricinus ticks in Sweden and I. scapularis ticks in the U.S.[11][12]
[edit] Genomic characteristics
One of the most striking features of B. burgdorferi as compared with other eubacteria is its unusual genome, which is far more complex than that of its spirochetal cousin Treponema pallidum, the agent of syphilis.[13] The genome of B. burgdorferi includes a linear chromosome approximately one megabase in size, with 21 plasmids (12 linear and 9 circular) - by far the largest number of plasmids found in any known bacterium.[14] Genetic exchange, including plasmid transfers, contributes to the pathogenicity of the organism.[15] Long-term culture of B. burgdorferi results in a loss of some plasmids and changes in expressed protein profiles. Associated with the loss of plasmids is a loss in the ability of the organism to infect laboratory animals, suggesting that the plasmids encode key genes involved in virulence.
[edit] Structure and growth
B. burgdorferi is a highly specialized, motile, two-membrane, spiral-shaped spirochete ranging from about 9 to 32 micrometers in length. It is often described as gram-negative and has an outer membrane with LPS, though it stains only weakly in the Gram stain. B. burgdorferi is a microaerophilic organism, requiring little oxygen to survive. It lives primarily as an extracellular pathogen, although it can also hide intracellularly (see Mechanisms of persistence section).
Like other spirochetes such as T. pallidum (the agent of syphilis), B. burgdorferi has an axial filament composed of flagella which run lengthways between its cell wall and outer membrane. This structure allows the spirochete to move efficiently in corkscrew fashion through viscous media, such as connective tissue. As a result, B. burgdorferi can disseminate throughout the body within days to weeks of infection, penetrating deeply into tissue where the immune system and antibiotics may not be able to eradicate the infection.
B. burgdorferi is very slow growing, with a doubling time of 12-24 hours (in contrast to pathogens such as Streptococcus and Staphylococcus, which have a doubling time of 20-30 minutes). Since most antibiotics kill bacteria only when they are dividing, this longer doubling time necessitates the use of relatively longer treatment courses for Lyme disease. Antibiotics are most effective during the growth phase, which for B. burgdorferi occurs in four-week cycles. Some clinicians have observed that chronic Lyme patients commonly experience a worsening of symptoms every four weeks; these periodic flare-ups are thought to correspond to the growth phase of B. burgdorferi.[16]
[edit] Mechanisms of persistence
While B. burgdorferi is susceptible to a number of antibiotics in vitro, there are contradictory reports as to the efficacy of antibiotics in vivo. B. burgdorferi may persist in humans and animals for months or years despite a robust immune response and standard antibiotic treatment, particularly when treatment is delayed and dissemination widespread. Numerous studies have demonstrated persistence of infection despite antibiotic therapy.[17][18][19][20][21][22][23][24][25]
Various survival strategies of B. burgdorferi have been posited to explain this phenomenon,[26] including the following:
- Physical sequestration of B. burgdorferi in sites that are inaccessible to the immune system and antibiotics, such as the brain[27] and central nervous system. New evidence suggests that B. burgdorferi may use the host's fibrinolytic system to penetrate the blood-brain barrier.[28]
- Intracellular invasion. B. burgdorferi has been shown to invade a variety of cells, including endothelium,[29] fibroblasts,[30] lymphocytes,[31] macrophages,[32] keratinocytes,[33] synovium,[34][35] and most recently neuronal and glial cells. [36] By 'hiding' inside these cells, B. burgdorferi is able to evade the immune system and is protected to varying degrees against antibiotics,[37][38] allowing the infection to persist in a chronic state. Paradoxically, many of these scientific studies were performed and published by critics of persistent Borrelia infection.
- Altered morphological forms, i.e. spheroplasts (cysts, granules).
- The existence of B. burgdorferi spheroplasts, which lack a cell wall, has been well documented in vitro,[39][40][41][42][43][44][45] in vivo,[35][41][46][47] and in an ex vivo model.[48]The fact that energy is required for the spiral bacterium to convert to the cystic form[39] suggests that these altered forms have a survival function, and are not merely end stage degeneration products. The spheroplasts are indeed virulent and infectious, able to survive under adverse environmental conditions, and have been shown to revert back to the spiral form in vitro, once conditions are more favorable.[41][49][50][51][52]
- A number of other factors make B. burgdorferi spheroplasts a key factor in the relapsing, chronic nature of Lyme disease. Compared to the spiral form, spheroplasts have dramatically reduced surface area for immune surveillance. They also express different surface proteins - another reason for seronegative disease (i.e. false-negative antibody tests), as current tests only look for antibodies to surface proteins of the spiral form. In addition, B. burgdorferi spheroplasts are generally not susceptible to the antibiotics traditionally used for Lyme disease. They have instead shown sensitivity in vitro to antiparasitic drugs such as metronidazole,[53] tinidazole,[54] and hydroxychloroquine,[55] to which the spiral form of B. burgdorferi is not sensitive.
- Antigenic variation. Like the Borrelia that cause relapsing fever, B. burgdorferi has the ability to vary its surface proteins in response to immune attack.[26][56] This ability is related to the genomic complexity of B. burgdorferi, and is another way B. burgdorferi evades the immune system to establish a chronic infection.
- Immune system suppression. Complement inhibition, induction of anti-inflammatory cytokines such as IL-10, and the formation of immune complexes have all been documented in B. burgdorferi infection.[26] Furthermore, the existence of immune complexes provides another explanation for seronegative disease (i.e. false-negative antibody tests of blood and cerebrospinal fluid), as studies have shown that substantial numbers of seronegative Lyme patients have antibodies bound up in these complexes.[57][58][59]
[edit] Advancing Immunology Research
The role of T cells in borrelia was first made in 1984,[60] the role of cellular immunity in active Lyme disease was made in 1986,[61] and long term persistance of T cell lymphocyte responses to B. burgdorferi as an "immunological scar syndrome" was hypothesized in 1990.[62] The role Th1 and interferon-gamma (INF-gamma) in borrelia was first described in 1995.[63] The cytokine pattern of Lyme disease, and the role of Th1 with down regulation of interleukin-10 (IL-10) was first proposed in 1997.[64]
Recent studies in both acute and antibiotic refractory, or chronic, Lyme disease have shown a distinct pro-inflammatory immune process. This pro-inflammatory process is a cell-mediated immunity and results in Th1 upregulation. These studies have shown a significant decrease in cytokine output of (IL-10), an upregulation of Interleukin-6 (IL-6) and IFN-gamma and disregulation in TNF-alpha predominantly.[65] Disregulated production of pro-inflammatory cytokines such as IL-6 and TNF-alpha can lead to neuronal damage in the borrelia infected patient.[66]
These studies suggest that the host immune response to infection results in increased levels of IFN-gamma in the serum and lesions of Lyme disease patients that correlate with greater severity of disease. IFN-gamma alters gene expression by endothelia exposed to B. burgdorferi in a manner that promotes recruitment of T cells and suppresses that of neutrophils.
Studies also suggest suppressors of cytokine signaling (SOCS) proteins are induced by cytokines, and T cell receptor can down-regulate cytokine and T cell signaling in macrophages. It is hypothesized that SOCS are induced by IL-10 and Borellia burgdorferi and its lipoproteins in macrophages, and that SOCS may mediate the inhibition by IL-10 of concomitantly elicited cytokines. IL-10 is generally regarded as an anti-inflammatory cytokine, since it acts on a variety of cell types to suppress production of proinflammatory mediators.
Researchers are also beginning to identify microglia as a previously unappreciated source of inflammatory mediator production following infection with Borellia burgdorferi. Such production may play an important role during the development of Lyme neuroborreliosis, including the development of brain lesions and cerebral hypoperfusion.
The culmination of these new and ongoing immunological studies suggest this cell-mediated immune disruption in the Lyme patient amplifies the inflammatory process, often rendering it chronic and self-perpetuating, regardless of whether the borrelia bacterium is still present in the host, or in the absence of the inciting pathogen in an autoimmune pattern.[67][68][69][70][71][72]
Researchers hope that this new developing understanding of the biomolecular basis and pathology of cell-mediated signaling events caused by Borrelia burgdoferi infection will lead to a greater understanding of immune response and inflammation caused by Lyme disease and, hopefully, new treatment strategies for chronic antibiotic-resistant disease.
[edit] References
- ^ Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG (2004). "Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe" (PDF). Microbiology 150 (Pt 6): 1741-55. PMID 15184561.
- ^ [1]K. "Lyme borreliosis: review of present knowledge" Cesk Epidemiol Mikrobiol Imunol. 1993 Jun;42(2):87-92.
- ^ Collares-Pereira M, Couceiro S, Franca I, Kurtenbach K, Schafer SM, Vitorino L, Goncalves L, Baptista S, Vieira ML, Cunha C (2004). "First isolation of Borrelia lusitaniae from a human patient" (PDF). J Clin Microbiol 42 (3): 1316-8. PMID 15004107.
- ^ Postic D, Ras NM, Lane RS, Hendson M, Baranton G (1998). "Expanded diversity among Californian borrelia isolates and description of Borrelia bissettii sp. nov. (formerly Borrelia group DN127)" (PDF). J Clin Microbiol 36 (12): 3497-504. PMID 9817861.
- ^ Maraspin V, Cimperman J, Lotric-Furlan S, Ruzic-Sabljic E, Jurca T, Picken RN, Strle F (2002). "Solitary borrelial lymphocytoma in adult patients". Wien Klin Wochenschr 114 (13-14): 515-23. PMID 12422593.
- ^ Richter D, Postic D, Sertour N, Livey I, Matuschka FR, Baranton G (2006). "Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov". Int J Syst Evol Microbiol 56 (Pt 4): 873-81. PMID 16585709.
- ^ Foldvari G, Farkas R, Lakos A (2005). "Borrelia spielmanii erythema migrans, Hungary". Emerg Infect Dis 11 (11): 1794-5. PMID 16422006.
- ^ Diza E, Papa A, Vezyri E, Tsounis S, Milonas I, Antioniadis A. (2004). "Borrelia valaisiana in cerebrospinal fluid [letter.]". Emerg Infect Dis 10 (9): 1692-3. PMID 15503409.
- ^ Varela AS, Luttrell MP, Howerth EW, Moore VA, Davidson WR, Stallknecht DE, Little SE (2004). "First culture isolation of Borrelia lonestari, putative agent of southern tick-associated rash illness" (PDF). J Clin Microbiol 42 (3): 1163-9. PMID 15004069.
- ^ Masters E, Granter S, Duray P, Cordes P (1998). "Physician-diagnosed erythema migrans and erythema migrans-like rashes following Lone Star tick bites". Arch Dermatol 134 (8): 955-60. PMID 9722725.
- ^ Scoles GA, Papero M, Beati L, Fish D (2001). "A relapsing fever group spirochete transmitted by Ixodes scapularis ticks". Vector Borne Zoonotic Dis 1 (1): 21-34. PMID 12653133.
- ^ Bunikis J, Tsao J, Garpmo U, Berglund J, Fish D, Barbour AG (2004). "Typing of Borrelia relapsing fever group strains". Emerg Infect Dis 10 (9): 1661-4. PMID 15498172.
- ^ Porcella SF, Schwan TG (2001). "Borrelia burgdorferi and Treponema pallidum: a comparison of functional genomics, environmental adaptations, and pathogenic mechanisms". J Clin Invest 107 (6): 651-6. PMID 11254661.
- ^ Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM (2000). "A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi". Mol Microbiol 35 (3): 490-516. PMID 10672174.
- ^ Qiu WG, Schutzer SE, Bruno JF, Attie O, Xu Y, Dunn JJ, Fraser CM, Casjens SR, Luft BJ (2004). "Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing" (PDF). Proc Natl Acad Sci U S A 101 (39): 14150-5. PMID 15375210.
- ^ Burrascano JJ (2005). "Diagnostic hints and treatment guidelines for Lyme and other tick borne illnesses". 15th edition. Retrieved on 2006-05-01.
- ^ Nocton JJ, Dressler F, Rutledge BJ, Rys PN, Persing DH, Steere AC (1994). "Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis". N Engl J Med 330 (4): 229-34. PMID 8272083.
- ^ Bayer ME, Zhang L, Bayer MH (1996). "Borrelia burgdorferi DNA in the urine of treated patients with chronic Lyme disease symptoms. A PCR study of 97 cases". Infection 24 (5): 347-53. PMID 8923044.
- ^ Preac-Mursic V, Weber K, Pfister HW, Wilske B, Gross B, Baumann A, Prokop J (1989). "Survival of Borrelia burgdorferi in antibiotically treated patients with Lyme borreliosis". Infection 17 (6): 355-9. PMID 2613324.
- ^ Pfister HW, Preac-Mursic V, Wilske B, Schielke E, Sorgel F, Einhaupl KM (1991). "Randomized comparison of ceftriaxone and cefotaxime in Lyme neuroborreliosis". J Infect Dis 163 (2): 311-8. PMID 1988514.
- ^ Oksi J, Marjamaki M, Nikoskelainen J, Viljanen MK (1999). "Borrelia burgdorferi detected by culture and PCR in clinical relapse of disseminated Lyme borreliosis". Ann Med 31 (3): 225-32. PMID 10442678.
- ^ Hudson BJ, Stewart M, Lennox VA, Fukunaga M, Yabuki M, Macorison H, Kitchener-Smith J (1998). "Culture-positive Lyme borreliosis". Med J Aust 168 (10): 500-2. PMID 9631675.
- ^ Lawrence C, Lipton RB, Lowy FD, Coyle PK (1995). "Seronegative chronic relapsing neuroborreliosis". Eur Neurol 35 (2): 113-7. PMID 7796837.
- ^ Honegr K, Hulinska D, Dostal V, Gebousky P, Hankova E, Horacek J, Vyslouzil L, Havlasova J (2001). "[Persistence of Borrelia burgdorferi sensu lato in patients with Lyme borreliosis]". Epidemiol Mikrobiol Imunol 50 (1): 10-6. PMID 11233667.
- ^ Straubinger RK, Summers BA, Chang YF, Appel MJ (1997). "Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment" (PDF). J Clin Microbiol 35 (1): 111-6. PMID 8968890.
- ^ a b c Embers ME, Ramamoorthy R, Philipp MT (2004). "Survival strategies of Borrelia burgdorferi, the etiologic agent of Lyme disease". Microbes Infect 6 (3): 312-8. PMID 15065567.
- ^ Miklossy J, Khalili K, Gern L, Ericson RL, Darekar P, Bolle L, Hurlimann J, Paster BJ (2004). "Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease". J Alzheimers Dis 6 (6): 639-49; discussion 673-81. PMID 15665404.
- ^ Grab DJ, Perides G, Dumler JS, Kim KJ, Park J, Kim YV, Nikolskaia O, Choi KS, Stins MF, Kim KS (2005). "Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier". Infect Immun 73 (2): 1014-22. PMID 15664945.
- ^ Ma Y, Sturrock A, Weis JJ (1991). "Intracellular localization of Borrelia burgdorferi within human endothelial cells" (PDF). Infect Immun 59 (2): 671-8. PMID 1987083.
- ^ Klempner MS, Noring R, Rogers RA (1993). "Invasion of human skin fibroblasts by the Lyme disease spirochete, Borrelia burgdorferi". J Infect Dis 167 (5): 1074-81. PMID 8486939.
- ^ Dorward DW, Fischer ER, Brooks DM (1997). "Invasion and cytopathic killing of human lymphocytes by spirochetes causing Lyme disease". Clin Infect Dis 25 Suppl 1: S2-8. PMID 9233657.
- ^ Montgomery RR, Nathanson MH, Malawista SE (1993). "The fate of Borrelia burgdorferi, the agent for Lyme disease, in mouse macrophages. Destruction, survival, recovery". J Immunol 150 (3): 909-15. PMID 8423346.
- ^ Aberer E, Kersten A, Klade H, Poitschek C, Jurecka W (1996). "Heterogeneity of Borrelia burgdorferi in the skin". Am J Dermatopathol 18 (6): 571-9. PMID 8989928.
- ^ Girschick HJ, Huppertz HI, Russmann H, Krenn V, Karch H (1996). "Intracellular persistence of Borrelia burgdorferi in human synovial cells". Rheumatol Int 16 (3): 125-32. PMID 8893378.
- ^ a b Nanagara R, Duray PH, Schumacher HR Jr (1996). "Ultrastructural demonstration of spirochetal antigens in synovial fluid and synovial membrane in chronic Lyme disease: possible factors contributing to persistence of organisms". Hum Pathol 27 (10): 1025-34. PMID 8892586.
- ^ Livengood JA, Gilmore RD (2006). "Invasion of human neuronal and glial cells by an infectious strain of Borrelia burgdorferi.". Microbes Infect [Epub ahead of print]. PMID 17045505.
- ^ Georgilis K, Peacocke M, Klempner MS (1992). "Fibroblasts protect the Lyme disease spirochete, Borrelia burgdorferi, from ceftriaxone in vitro". J Infect Dis 166 (2): 440-4. PMID 1634816.
- ^ Brouqui P, Badiaga S, Raoult D (1996). "Eucaryotic cells protect Borrelia burgdorferi from the action of penicillin and ceftriaxone but not from the action of doxycycline and erythromycin" (PDF). Antimicrob Agents Chemother 40 (6): 1552-4. PMID 8726038.
- ^ a b Alban PS, Johnson PW, Nelson DR (2000). "Serum-starvation-induced changes in protein synthesis and morphology of Borrelia burgdorferi". Microbiology 146 ( Pt 1): 119-27. PMID 10658658 Full Text.
- ^ Benach JL (1999). "Functional heterogeneity in the antibodies produced to Borrelia burgdorferi". Wien Klin Wochenschr 111 (22-23): 985-9. PMID 10666815.
- ^ a b c Mursic VP, Wanner G, Reinhardt S, Wilske B, Busch U, Marget W (1996). "Formation and cultivation of Borrelia burgdorferi spheroplast-L-form variants". Infection 24 (3): 218-26. PMID 8811359.
- ^ Cluss RG, Goel AS, Rehm HL, Schoenecker JG, Boothby JT (1996). "Coordinate synthesis and turnover of heat shock proteins in Borrelia burgdorferi: degradation of DnaK during recovery from heat shock" (PDF). Infect Immun 64 (5): 1736-43. PMID 8613385.
- ^ Kersten A, Poitschek C, Rauch S, Aberer E (1995). "Effects of penicillin, ceftriaxone, and doxycycline on morphology of Borrelia burgdorferi" (PDF). Antimicrob Agents Chemother 39 (5): 1127-33. PMID 7625800.
- ^ Angelov L, Dimova P, Berbencova W (1996). "Clinical and laboratory evidence of the importance of the tick D. marginatus as a vector of B. burgdorferi in some areas of sporadic Lyme disease in Bulgaria". Eur J Epidemiol 12 (5): 499-502. PMID 8905312.
- ^ Schaller M, Neubert U (1994). "Ultrastructure of Borrelia burgdorferi after exposure to benzylpenicillin". Infection 22 (6): 401-6. PMID 7698837.
- ^ Phillips SE, Mattman LH, Hulinska D, Moayad H (1998). "A proposal for the reliable culture of Borrelia burgdorferi from patients with chronic Lyme disease, even from those previously aggressively treated". Infection 26 (6): 364-7. PMID 9861561.
- ^ Hulinska D, Bartak P, Hercogova J, Hancil J, Basta J, Schramlova J (1994). "Electron microscopy of Langerhans cells and Borrelia burgdorferi in Lyme disease patients". Zentralbl Bakteriol 280 (3): 348-59. PMID 8167429.
- ^ Duray PH, Yin SR, Ito Y, Bezrukov L, Cox C, Cho MS, Fitzgerald W, Dorward D, Zimmerberg J, Margolis L (2005). "Invasion of human tissue ex vivo by Borrelia burgdorferi". J Infect Dis 191 (10): 1747-54. PMID 15838803.
- ^ Brorson O, Brorson SH (1997). "Transformation of cystic forms of Borrelia burgdorferi to normal, mobile spirochetes". Infection 25 (4): 240-6. PMID 9266264.
- ^ Brorson O, Brorson SH (1998). "In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H medium". Infection 26 (3): 144-50. PMID 9646104.
- ^ Gruntar I, Malovrh T, Murgia R, Cinco M (2001). "Conversion of Borrelia garinii cystic forms to motile spirochetes in vivo". APMIS 109 (5): 383-8. PMID 11478686.
- ^ Murgia R, Cinco M (2004). "Induction of cystic forms by different stress conditions in Borrelia burgdorferi". APMIS 112 (1): 57-62. PMID 14961976.
- ^ Brorson O, Brorson SH (1999). "An in vitro study of the susceptibility of mobile and cystic forms of Borrelia burgdorferi to metronidazole". APMIS 107 (6): 566-76. PMID 10379684.
- ^ Brorson O, Brorson SH (2004). "An in vitro study of the susceptibility of mobile and cystic forms of Borrelia burgdorferi to tinidazole" (PDF). Int Microbiol 7 (2): 139-42. PMID 15248163.
- ^ Brorson O, Brorson SH (2002). "An in vitro study of the susceptibility of mobile and cystic forms of Borrelia burgdorferi to hydroxychloroquine". Int Microbiol 5 (1): 25-31. PMID 12102233.
- ^ Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M, Fikrig E (2004). "Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses". Infect Immun 72 (10): 5759-67. PMID 15385475.
- ^ Schutzer SE, Coyle PK, Reid P, Holland B (1999). "Borrelia burgdorferi-specific immune complexes in acute Lyme disease". JAMA 282 (20): 1942-6. PMID 10580460.
- ^ Coyle PK, Schutzer SE, Belman AL, Krupp LB, Golightly MG (1990). "Cerebrospinal fluid immune complexes in patients exposed to Borrelia burgdorferi: detection of Borrelia-specific and -nonspecific complexes". Ann Neurol 28 (6): 739-44. PMID 2285261.
- ^ Schutzer SE, Coyle PK, Belman AL, Golightly MG, Drulle J (1990). "Sequestration of antibody to Borrelia burgdorferi in immune complexes in seronegative Lyme disease". Lancet 335 (8685): 312-5. PMID 1967770.
- ^ Newman K Jr, Johnson RC."T-cell-independent elimination of Borrelia turicatae".Infect Immun. 1984 Sep;45(3):572-6.
- ^ Dattwyler RJ, Thomas JA, Benach JL, Golightly MG."Cellular immune response in Lyme disease: the response to mitogens, live Borrelia burgdorferi, NK cell function and lymphocyte subsets". Zentralbl Bakteriol Mikrobiol Hyg [A]. 1986 Dec;263(1-2):151-9
- ^ Kruger H, Pulz M, Martin R, Sticht-Groh V. "Long-term persistence of specific T- and B-lymphocyte responses to Borrelia burgdorferi following untreated neuroborreliosis". Infection. 1990 Sep-Oct;18(5):263-7.
- ^ Forsberg P, Ernerudh J, Ekerfelt C, Roberg M, Vrethem M, Bergstrom S. "The outer surface proteins of Lyme disease borrelia spirochetes stimulate T cells to secrete interferon-gamma (IFN-gamma): diagnostic and pathogenic implications". Clin Exp Immunol. 1995 Sep;101(3):453-60.
- ^ Yin Z, Braun J, Neure L, Wu P, Eggens U, Krause A, Kamradt T, Sieper J. "T cell cytokine pattern in the joints of patients with Lyme arthritis and its regulation by cytokines and anticytokines". Arthritis Rheum. 1997 Jan;40(1):69-79.
- ^ Shin JJ, Glickstein LJ, Steere AC."High levels of inflammatory chemokines and cytokines in joint fluid and synovial tissue throughout the course of antibiotic-refractory lyme arthritis". Arthritis Rheum. 2007 Mar 28;56(4):1325-1335
- ^ Ramesh G, Philipp MT. "Pathogenesis of Lyme neuroborreliosis: mitogen-activated protein kinases Erk1, Erk2, and p38 in the response of astrocytes to Borrelia burgdorferi lipoproteins". Neurosci Lett. 2005 Aug 12-19;384(1-2):112-6.
- ^ [2]Shin JJ, Glickstein LJ, Steere AC. "High levels of inflammatory chemokines and cytokines in joint fluid and synovial tissue throughout the course of antibiotic-refractory lyme arthritis". Arthritis Rheum. 2007 Mar 28;56(4):1325-1335
- ^ [3]Kisand KE, Prukk T, Kisand KV, Luus SM, Kalbe I, Uibo R. "Propensity to excessive proinflammatory response in chronic Lyme borreliosis". APMIS. 2007 Feb;115(2):134-41.
- ^ [4]Dame TM, Orenzoff BL, Palmer LE, Furie MB. "IFN-gamma alters the response of Borrelia burgdorferi-activated endothelium to favor chronic inflammation".J Immunol. 2007 Jan 15;178(2):1172-9.
- ^ [5]Dennis VA, Jefferson A, Singh SR, Ganapamo F, Philipp MT. "Interleukin-10 anti-inflammatory response to Borrelia burgdorferi, the agent of Lyme disease: a possible role for suppressors of cytokine signaling 1 and 3".Infect Immun. 2006 Oct;74(10):5780-9.
- ^ [6]Ghosh S, Seward R, Costello CE, Stollar BD, Huber BT "Autoantibodies from synovial lesions in chronic, antibiotic treatment-resistant Lyme arthritis bind cytokeratin-10". J Immunol. 2006 Aug 15;177(4):2486-94.
- ^ [7]Rasley A, Anguita J, Marriott I. "Borrelia burgdorferi induces inflammatory mediator production by murine microglia". J Neuroimmunol. 2002 Sep;130(1-2):22-31.