Lung volumes

From Wikipedia, the free encyclopedia

Lung volumes
Lung volumes

The average pair of human lungs can hold about 6 liters of air, but only a small amount of this capacity is used during normal breathing. Lung volumes refer to physical differences in volume, while lung capacities represent different combinations of lung volumes, usually in relation to respiration and exhalation.

Breathing mechanism in mammals is called "tidal breathing". Tidal breathing means that air goes into the lungs the same way that it comes out.

Contents

[edit] Factors affecting lung volume

The largest total lung capacity recorded was that of British rower Peter Reed, with a volume of 11.68 l.

Several factors affect lung volumes, some that can be controlled and some that can not. These factors include:

Larger volumes Smaller volumes
males females
tall people shorter people
nonsmokers heavy smokers
professional athletes non-athletes
people living at high altitudes people living at low altitudes

A person who is born and lives at sea level will have a smaller lung capacity than a person who spends their life at a high altitude. This is because the atmosphere is less dense at higher altitude, and therefore, the same volume of air contains fewer molecules of all gases, including oxygen.

In response to, the lungs gradually grow larger in order to be able to process more air. When someone from sea level travels up to the higher parts of the earth (eg. the Andes, Mexico City, Tibet and the Himalayas) they will often develop a condition called altitude sickness because their lungs cannot process enough oxygen for their body's needs.

[edit] Measurement and values

These values vary with the age and height of the person; the values that follow are for a 70 kg (154 lb), average-sized adult male [1]:

Measurement Value Calculation Description
Total lung capacity (TLC) = 6 l = IRV + TV + ERV + RV The volume of gas contained in the lung at the end of maximal inspiration. The total volume of the lung (i.e.: the volume of air in the lungs after maximum inspiration).
Vital capacity (VC) = 4.8 l measured The amount of air that can be forced out of the lungs after a maximal respiration. Emphasis on completeness of expiration.[2][3]
Forced vital capacity (FVC) = 4.8 l measured The amount of air that can be forced out of the lungs after a maximal respiration. Emphasis on speed.[4][5][6]
Tidal volume (TV) = 500 ml measured The amount of air breathed in or out during normal respiration. The volume of air an individual is normally breathing in and out.
Residual volume (RV) = 1.2 l measured The amount of air left in the lungs after a maximal exhalation. The amount of air that is always in the lungs and can never be expired (i.e.: the amount of air that stays in the lungs after maximum expiration).
Expiratory reserve volume (ERV) = 1.2 l measured The amount of additional air that can be breathed out after normal expiration. (At the end of a normal breath, the lungs contain the residual volume plus the expiratory reserve volume, or around 2.4 liters. If one then goes on and exhales as much as possible, only the residual volume of 1.2 liters remains). The maximum volume of air that can be expired in addition to the normally expired air.
Inspiratory reserve volume (IRV) = 3.6 l measured The additional air that can be inhaled after a normal tidal breath in. The maximum volume of air that can be inspired in addition to the tidal volume.
Functional residual capacity (FRC) = 2.4 l = ERV + RV The amount of air left in the lungs after a tidal breath out. The amount of air that stays in the lungs during normal breathing.
Inspiratory capacity (IC) = 4.1 l = TV + IRV The volume that can be inhaled after a tidal breathe-out.
Anatomical dead space = 150 ml measured The volume of the conducting airways. Measured with Fowler method.[7]
Physiologic dead volume = 155 ml V_\mathrm{T} \,\frac{P_\mathrm{A\,CO_2}-P_\mathrm{E\,CO_2}}{P_\mathrm{A\,CO_2}} The anatomic dead space plus the alveolar dead space.

The tidal volume, vital capacity, inspiratory capacity and expiratory reserve volume can be measured directly with a spirometer. Determination of the residual volume can be done by radiographic planemetry, body plethysmography, closed circuit dilution and nitrogen washout.

These are the basic elements of a ventilatory pulmonary function test. The results (in particular FEV1/FVC and FRC) can be used to distinguish between restrictive and obstructive pulmonary diseases:

Type Examples Description FEV1/FVC
restrictive diseases pulmonary fibrosis volumes are decreased often in a normal range
obstructive diseases asthma or COPD volumes are essentially normal but flow rates are impeded often low

ONLY approximately 7.5% of lung air is changed over on one breath at rest.

[edit] References

  1. ^ Palsson, et al. Tissue Engineering (2003). CRC Press. ISBN 0-8493-1812-2. page 7-7.
  2. ^ GPnotebook -1281753041
  3. ^ Dorlands/Elsevier c_05/12210351
  4. ^ GPnotebook 718274567
  5. ^ Dorlands/Elsevier c_05/12210260
  6. ^ Chhabra S (1998). "Forced vital capacity, slow vital capacity, or inspiratory vital capacity: which is the best measure of vital capacity?". J Asthma 35 (4): 361-5. PMID 9669830. 
  7. ^ Physiology at MCG 4/4ch3/s4ch3_17

[edit] External links


In other languages