Location-scale family

From Wikipedia, the free encyclopedia

In probability theory, especially as that field is used in statistics, a location-scale family is a family of univariate probability distributions parametrized by a location parameter μ and a scale parameter σ ≥ 0; if X is any random variable whose probability distribution belongs to such a family, then Y = μ + σX is another, and every distribution in the family is of that form.

In other words, a class Ω of probability distributions is a location-scale family if whenever F is the cumulative distribution function of a member of Ω and μ is any real number and σ > 0, then G(x) = F(μ + σx) is also the cumulative distribution function of a member of Ω.

[edit] Examples

[edit] References

http://www.ds.unifi.it/VL/VL_EN/special/special1.html

Image:Bvn-small.png Probability distributionsview  talk  edit ]
Univariate Multivariate
Discrete: BenfordBernoullibinomialBoltzmanncategoricalcompound PoissondegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomialmultivariate Polya
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-LogisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-squareinverse Gaussianinverse gammaKumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)normal inverse GaussianParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceshifted GompertzStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVariance-GammaVoigtvon MisesWeibullWigner semicircleWilks' lambda DirichletKentmatrix normalmultivariate normalmultivariate Studentvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropyphase-typeposteriorpriorquasisamplingsingular